期刊文献+

应用层异常检测模型

The Model of Application Level Anomaly Detetion
下载PDF
导出
摘要 目前的应用层异常检测方法多是针对某一种应用层攻击而设计的,通用性较差。本文基于人体免疫系统T细胞识别自体和非自体的原理,设计了基于否定选择的应用层异常检测通用模型,研究了实现否定选择应用层的关键技术。仿真实验表明,该模型能够有效地检测网络服务器的应用层的异常访问,具有广泛的应用前景和推广价值。 The current technique of application level anomaly detection has a bad universal property which is for one type of application level attack.Inspired from the principle of immune cell identifying nonself,a generic model of application level anomaly detection based on negative selection is designed,and the key technologies of implementation are studied.Simulation tests show that the model can detect the application level anomaly of network servers,and has the advantages of good performance,and broad application prospect.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第7期35-37,41,共4页 Computer Engineering & Science
基金 湖南省教育厅资助科研项目(08D030 07D018)
关键词 网络攻击 应用层异常检测模型 免疫系统 否定选择算法 自体 非自体 network attack application level anomaly detection model immune system negative selected algorithm self nonself
  • 相关文献

参考文献10

  • 1Wang K, Stolfo S J. Anomalous Payload-Based Network Intrusion Detection[C]//Proc of the 7th Int'l Syrup on Recent Advances in Intrusion Detection,2004:203-222.
  • 2Like Z,White G B. Anomaly Detection for Application Level Network Attacks Using Payload Keywords[C] //Proc of the 2007 IEEE Syrup on Computational Intelligence in Security and Defense Applications, 2007: 178-185.
  • 3谢逸,余顺争.应用层洪泛攻击的异常检测[J].计算机科学,2007,34(8):109-111. 被引量:6
  • 4谢逸,余顺争.基于Web用户浏览行为的统计异常检测[J].软件学报,2007,18(4):967-977. 被引量:42
  • 5Forrest S, Perelson A S. Allen L. Self-Nonself Discrimination in a Computer[C]//Proc of the 1994 IEEE Symp on Security and Privacy, 1994 : 202-212.
  • 6莫宏伟,管凤旭,吕淑萍,徐立芳,王辉.人工免疫记忆分类器多类多维问题研究[J].计算机工程与科学,2007,29(2):100-103. 被引量:1
  • 7Williams A, Arlitt M. Web Workload Characterization Web Content Delivery[M]. Springer, 2005 : 1-19.
  • 8陈博,方滨兴,云晓春.分布式蠕虫检测和遏制方法的研究[J].通信学报,2007,28(2):9-16. 被引量:12
  • 9Zhou Ji, Dasgupta D. Real-Valued Negative Selection Using Variable-Sized Detectors[C]//Proc of Genetic and Evolutionary Computation Conf, 2004 : 26-30.
  • 10Matzinger P. The Danger Model: A Renewed Sense of Self [J]. Science, 2002,296 (5566) : 301-305.

二级参考文献27

  • 1文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 2莫宏伟,吕淑萍,管凤旭,徐立芳,叶秀芬,马忠丽,王辉.基于人工免疫网络记忆的新型分类器研究[J].计算机工程与应用,2004,40(36):28-32. 被引量:17
  • 3DENNING D. An intrusion detection model[J]. IEEE Transactions on Software Engineering, 1987, 13(2):222-232.
  • 4ANDERSON D, FRIVOLD T, VALDES A. Next-Generation Intrusion Detection Expert System (hides) a Summary[R]. Technical Report SRI-CSL-95-07, SRI International, 1995.
  • 5BERK V H, GRAY R S, BAKOS G. Using sensor networks and data fusion for early detection of active worms[A]. Proceedings of the SPIE eroSense[C]. 2003.92-104.
  • 6ZOU C C, GONG W, TOWSLEY D. Worm propagation modeling and analysis under dynamic quarantine defense[A]. ACM CCS Workshop on Rapid Malcode[C]. Washington DC, USA :ACM, 27,2003.51-60.
  • 7SIRIS V A, PAGAALOU F. Application of anomaly detection algorithms for detecting SYN flooding attacks[A]. IEEE Global Telecommunications Conference[C]. 2004. 2050-2054.
  • 8VALDES, SKINNER K. Adaptive, model-based monitoring for cyber attack detection[A]. Proceedings of the 3th International Symposium on Recent Advances in Intrusion Detection[C]. 2000.80-92.
  • 9MANKU G S, MOTWAN R. Approximate frequency counts over data streams[A]. Proc of 22nd Intl Conf on Very Large Data Bases[C]. HK,China, 2002. 346-357.
  • 10STANIFORD S, PAXSON V, WEAVER N. How to own the Internet in your spare time[A]. Proceedings of USENIX Security Symposium[C]. San Francisco, CA, 2002.149- 167.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部