期刊文献+

一种改进的盲解卷积算法在轴承声学诊断中的应用 被引量:4

Application of an improved blind deconvolution algorithm to acoustic-based rolling bearing defect detection
下载PDF
导出
摘要 针对时域盲解卷积算法滤波器长度估计困难的缺点,提出一种基于遗传算法优化的改进算法。该算法利用遗传算法搜索最佳时延,解决了盲解卷积结果不确定问题,并改进了信号分量的聚类指标,采用峭度作为独立分量间距离测度,提高了信号分量聚类的准确性,获得了可靠的估计信号。计算机仿真和实际环境中故障轴承声信号提取实验验证了该算法的有效性。 An improved time-domain blind deconvolution algorithm was proposed,based on genetic algorithm(GA) and higher order statistics(HOS).A newly defined distance measure based on kurtosis was employed to improve the classification accuracy of independent components in the cluster analysis process,and a GA was applied to search for an optimal length of blind deconvolution filters.With the help of these enhancements,the improved algorithm leads to perfect convolutive source separation for acoustic-based machine diagnosis.Both numerical and experimental studies were carried out.The results show that the algorithm can efficiently extract acoustic signals of fault bearings in real-world situations.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第6期11-14,24,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50805071) 云南省教育厅科学研究基金资助项目(08J0009)
关键词 盲解卷积 滚动轴承 声学诊断 聚类 独立分量分析 blind deconvolution rolling element bearing acoustic-based machine diagnosis cluster analysis independent component analysis
  • 相关文献

参考文献8

  • 1LyonRH.机器噪声和诊断学[M].北京:科学出版社,1989.
  • 2Wu J B, Chen J, Zhong Z M, et al. Application of Blind Source Separation Method in Mechanical Sound Signal Analysis [ C ]. 2002 ASME International Mechanical Engineer-ing Congress and Exposition, Nov 17- 22 2002, 785 -791.
  • 3张西宁,穆安乐,温广瑞.一种新的盲声源信号分离方法及其应用[J].西安交通大学学报,2005,39(1):6-8. 被引量:6
  • 4李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22
  • 5Koldovsky Z, Tichavsky P. Time-Domain Blind Audio Source Separation Using Advanced ICA Methods [ C ]. Interspeech 2007, 846 - 849.
  • 6Koldovsky Z, Tichavsky P. Time-Domain Blind Audio Source Separation Using Advanced Component Clustering and Reconstruction[ C]. HSCMA 2008, 216 -219.
  • 7Malek J, Koldovsky Z, Zdansky J, et al. Enhancement of Noisy Speech Recordings via Blind Source Separation[ C]. Interspeech,2008, 159 - 162.
  • 8Michael Syskind Pedersen, Jan Larsen, Ulrik Kjems, et al. A survey of Convolutive Blind Source Separation Methods [ M ]. In: Springer Handbook on Speech Communication ( 2007 ) , Springer.

二级参考文献13

  • 1[3]Tian X H,Lin J,Fyfe K R,et al.Gearbox fault diagnosis using independent component analysis in the frequency domain and wavelet filtering[C]∥ 2003 Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP'03),2003.
  • 2[4]Rivet B,Vigneron V,Paraschiv-Ionescu A,et al.Wavelet de-noising for blind source separation in noisy mixtures[C]∥ Lecture Notes in Computer Science,2004,3195:263~270.
  • 3[5]Paraschiv-Ionescu A,Jutten C,Aminian K,et al.Wavelet denoising for highly noisy source separation[C]∥ 2002 IEEE International Symposium on Circuits and Systems (ISCAS 2002),2002.
  • 4[7]Cardoso J F,Souloumiac A.Blind beamforming for non-Gaussian signals[J].Radar and Signal Processing,IEE Proceedings F,1993,140(6):362~370.
  • 5[8]Ypma A.Learning methods for machine vibration analysis and health monitoring[D].Delft University of Technology,2001.
  • 6Comon P. Independent component analysis: a new concept [J]. Signal Processing, 1994,36(3):287-314.
  • 7Bell A J. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7(6):1 129-1 159.
  • 8Hyvarinen A, Oja E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000,13(4-5) : 411-430.
  • 9Bell A J. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7(6):1129-1159.
  • 10洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52

共引文献25

同被引文献42

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部