期刊文献+

基于小波分解和残差GM(1,1)-AR的非平稳时间序列预测 被引量:19

Non-stationary time series prediction based on wavelet decomposition and remanet GM(1,1)-AR
原文传递
导出
摘要 提出基于二进正交小波变换和残差GM(1,1)-AR方法的非平稳时间序列预测方案.首先利用Mallat算法对非平稳时间序列进行分解和重构,分离出非平稳时间序列中的低频信息和高频信息;然后对高频信息构建自回归模型,对低频信息则用灰色残差模型进行拟合;最后将各模型的预测结果进行叠加,从而得到原始序列的预测值.该方法不仅能充分拟合低频信息,而且可避免对高频信息的过拟合.实验结果表明,这种方法比传统的非平稳时间序列预测方法具有更高的预测精度. A non-stationary time series prediction method based on wavelet transform and remanet GM(1,1)-AR was proposed.By wavelet decomposition and reconstruction,the non-stationary time series were decomposed into a low frequency signal and several high frequency signals.The high frequency signals were predicted with auto-regression models,and the low frequency was predicted with remanet GM(1,1).The prediction result of the original time series was the superimposition of the respective prediction. This new method avoids the over-fitted for high frequency signals,and adequately fits the low signal of the non-stationary time series,so better predicting performance can be obtained.Experiments show the novel method is of higher accuracy in comparison with the traditional ones.
作者 张华 任若恩
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第6期1016-1020,共5页 Systems Engineering-Theory & Practice
基金 国家自然科学基金创新研究群体科学基金(70821061)
关键词 小波分解 非平稳时间序列 残差GM(1 1)模型 自回归 预测 wavelet decomposition non-stationary time series remanet GM(1 1) model auto-regression prediction
  • 相关文献

参考文献6

  • 1Yang J T,Zhou J.Multivariable trend analysis using grey model for machinery condition monitoring[J].Eleventh World Congress in Mechanism and Machine Science,2004:2188-2191.
  • 2Wang M H.Grey-extension method for incipient fault forecasting of oil-immersed power transformer[J].Electric Power Components and Systems,2004,32(10):959-975.
  • 3Deng J L.Grey Forecasting and Decision[M].Wuhan:Huazhong University of Science and Technology Press Co.,Ltd,1987.
  • 4Zhang B l,Coggins R.Multiresolution forecasting for future trading using wavelet decomposition[J].Neural Networks,2001,12(4):765-775.
  • 5李攀峰.灰色模型及其组合模型在证券分析的应用[D].成都:电子科技大学,2000.
  • 6Hamilton J.Time Series Analysis[M].Princeton University Press,1994.

同被引文献211

引证文献19

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部