期刊文献+

RBF-AR模型在非线性时间序列预测中的应用 被引量:8

RBF-AR model-based nonlinear time series prediction
原文传递
导出
摘要 研究了RBF-AR模型在非线性时间序列中的建模和预测问题,并把它与其它一些新近提出的模型或方法加以了比较.一种结构化非线性参数优化方法用来辨识此模型.数值实验和比较研究表明采用结构化非线性参数优化方法的RBF-AR模型在预测精度上要大大优于其它一些模型或方法. This paper investigated nonlinear time series modeling and forecasting problem based on RBF-AR model,and the comparisons between RBF-AR model with other newly developed models.A structured nonlinear parameter optimization method(SNPOM) was applied to estimate the model.It is shown by the simulation tests and comparisons that the performance of RBF-AR estimated by SNPOM is superior to other models.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第6期1055-1061,共7页 Systems Engineering-Theory & Practice
基金 国家创新研究群体科学基金(70921001) 湖南省科技计划国际合作重点项目(2009WK2009) 国家自然科学基金(60574058)
关键词 RBF网络 RBF-AR模型 时间序列预测 RBF networks RBF-AR model time series forecasting
  • 相关文献

参考文献14

  • 1Cho K B,Wang B H.Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction[J].Fuzzy Sets and Systems,1996,83(3):325-339.
  • 2Harpham C,Dawson C W.The effect of different basis functions on a radial basis function network for time series prediction:A comparative study[J].Neurocomputing,2006,69(16):2161-2170.
  • 3Du H,Zhang N.Time series prediction using evolving radial basis function networks with new encoding scheme[J].Neurocomputing,2008,71:1388-1400.
  • 4Rojas I,Pomares H,Bernier J L,et al.Time series analysis using normalized PG-RBF network with regression weights[J].Neurocomputing,2002,42:267-285.
  • 5Chen Y,Yang B,Dong J,et al.Time series forecasting using flexible neural tree model[J].Information Sciences,2005,174:219-235.
  • 6Chen Y,Yang B,Dong J.Time series prediction using a local linear wavelet neural network[J].Neurocomputing,2006,69:449-465.
  • 7Valenzuela O,Rojas I,Rojas F,et al.Hybridization of intelligent techniques and ARIMA models for time series prediction[J].Fuzzy Sets and Systems,2008,159:821-845.
  • 8Priestley M B.State dependent models:A general approach to nonlinear time series analysis[J].Journal of Time Series Analysis,1980,1:57-71.
  • 9Vesin J.An amplitude-dependent autoregressive signal model based on a radial basis function expansion[C] //Proceedings of International Conference of ASSP,Minnesota,1993,3:129-132.
  • 10Shi Z,Tamura Y,Ozaki T.Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model[J].International Journal of System Science,1999,30(7):717-727.

同被引文献113

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部