摘要
生物地理学优化算法是一种新的全局优化算法,但该算法存在搜索能力不强的缺点.针对此不足,提出一种基于进化规划算法的实数编码混合生物地理学优化算法,新算法将进化规划的搜索性与生物地理学优化算法的利用性进行有机结合,从而达到搜索性与利用性的平衡.通过13个高维标准测试函数对算法进行测试,验证了新算法的有效性.与基本生物地理学优化算法和两种经典的进化规划算法进行比较,结果表明新算法优于所比较的三种算法.此外,新算法在收敛速度上优于基本生物地理学优化算法.
Biogeography-based optimization(BBO) algorithm is a new global optimization algorithm. However,BBO lacks the explorative ability.In this paper,we proposed a novel hybrid BBO approach, called BBO-EP,which is characterized by 1) representing the individual as a real-coded parameter vector, and 2) combining Evolutionary Programming(EP) and BBO to enhance the explorative ability of BBO. Experiments have been conducted on 13 high-dimensional benchmark functions.And the results indicate the good performance of BBO-EP.Compared with the original BBO and the two EP approaches(FEP and CEP),experimental results show that our approach is better than the other approaches(BBO,FEP, and CEP) in terms of the quality of the final solutions.Moreover,the proposed BBO-EP is faster than the original BBO with respect to the convergence speed.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2010年第6期1106-1112,共7页
Systems Engineering-Theory & Practice
基金
国家高技术研究发展计划(863计划)(2009AA12Z117)
国家"十一五"民用航天项目(C5220061318)
高校博士点基金(20090145110007)
关键词
生物地理学优化
进化规划
全局优化
混合算法
实数编码
biogeography-based optimization
evolutionary programming
global optimization
hybridization
real code