期刊文献+

基于灰关系分析的模糊聚类 被引量:2

Grey Relational Analysis for Fuzzy Clustering
下载PDF
导出
摘要 灰关系分析(Grey relational analysis,GRA))能够度量参考样本和比较样本间的相似性而广泛应用于聚类算法中,但目前基于GRA的聚类方法对灰关系阈值的设定采用尝试法,难以刻画信息的完全度。为此,本文将灰关系分析所学习的相似性度量嵌入到流行的模糊聚类算法中,从而提出了基于灰关系分析的模糊聚类方法。分析了灰关系性质和核机理论相似性基础之上,由灰色理论中的灰关系衍生出一种新型核——灰关系核,同时,也由核机理论诱导出一种新的灰关系度量,从而构建了灰关系分析和核机理论间的一条联系纽带。UCI数据集上的模拟实验验证了基于灰关系分析的模糊聚类方法和所提灰关系度量的有效性。 Grey relational analysis(GRA) can measure the similarity between the reference samples and the comparative samples,thus is widely applied in the clustering algorithms;however,the state-of-the-art clustering algorithms based on GRA set the grey relation threshold using try-and-error method,and could not conduct the real fuzziness.To solve this,this paper embeds the similarity measure learned by GRA into the popular fuzzy clustering methods,and proposes a fuzzy clustering method based on GRA.Based on the analysis on the similarity between grey relation and kernel method,the paper derivates a novel kernel—grey relation kernel,simultaneously,induces a novel grey relation metric by the kernel method.As a result,a bridge between GRA and kernel method is built.Simulation experiments on UCI benchmark datasets verify the effectiveness of the proposed algorithm and metric.
出处 《情报学报》 CSSCI 北大核心 2010年第3期493-496,共4页 Journal of the China Society for Scientific and Technical Information
关键词 灰关系分析 相似性 模糊聚类 核机理论 grey relational analysis(GRA) similarity fuzzy clustering kernel method
  • 相关文献

参考文献10

  • 1Duda R,Hart P,Stork D.Pattern Classification[M].Second ed.John Wiley & Sons,2001.
  • 2Xu S,Zhao H,Lv X.A Grey SVM based model for Patent Application Filings Forecasting[C].Hongkong:IEEE,2008:225-230.
  • 3Yamaguchi D,Li G,Mizutani K,et al.A K-means Clustering Approach Based on Grey Theory[C].Taipei,Taiwan:IEEE,2006:2291-2296.
  • 4Chang K,Yeh M.Grey relational analysis based approach for data clustering[C].IEEE,2005:165-172.
  • 5Lin C,Wu C,Huang P.Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers[J].Expert Systems with Applications,2009,36(2):1371-1379.
  • 6Liu S,Lin Y.Grey Information Theory and Practical Applications[M].London:Springer-Verlag London Limited,2006.
  • 7Deng J.Control problems of grey systems[J].System Control.1982,5(1):284-294.
  • 8Yamaguchi D,Li G D,Nagai M.New Grey Relational Analysis For Finding The Invariable Structure And Its Applications[J].Journal Of Grey System,2005,8(2):167-178.
  • 9Bezdek J.Pattern Recognition with Fuzzy Objective Function Algorithms[M].Plenum Press,1981.
  • 10Blake C L,Merz C J.UCI repository of machine learning databases[OL].[2009-11-04].http://www.ics.uci.edu/~mlearn/ML-Repository.html.Junio,2001.

同被引文献21

  • 1Duda R O, Hart P E, Stork D G. Pattern classification[ M ]. Second Edition. John Wiley & Sons,2001.
  • 2Chen L, Bhowmick S S, Nejdl W. COWES: Web user clustering based on evolutionary web sessions [ J]. Data & Knowledge Engineering, 2009,68 ( 1 O) : 867-885.
  • 3Frey B J, Dueck D. Clustering by passing messages between data points [ J ]. Science, 2007, 315 ( 5814 ) : 972 -976.
  • 4MacQueen J. Some methods for classification and analysis of multivariate observations[ C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967:281-297.
  • 5Chang K C, Yeh M F. Grey relational analysis based approach for data clustering [ C ] //lEE Proceedings- Vision, Image & Signal Processing, 2005 : 165-172.
  • 6Hennig C. Cluster-wise assessment of cluster stability[ J]. Computational Statistics & Data Analysis, 2007,52 ( 1 ) : 258-271.
  • 7Covoes T F, Hruschka E R. Towards improving cluster- based feature selection with a simplified silhouette filter [ J]. Information Sciences ,2011,181 ( 18 ) :3766-3782.
  • 8Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset [ J ]. Genome Biology, 2002,3 ( 7 ): 1-21.
  • 9Bogdanova G,Georgieva T. Using error-correcting depen- dencies for collaborative filtering[ J]. Data & Knowledge Engineering, 2008,66 ( 3 ) :402-413.
  • 10Kim H N, Saddik A E, Jo G S. Collaborative error- reflected models for cold-start recommender systems [ J ]. Decision Support Systems ,2011,51 ( 3 ) : 519-531.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部