摘要
该文主要介绍了应用信赖域方法来得到一个向量u(x)=(u1(x),u2(x))t,使得匹配由相同的成像设备获取的两幅很相的图像,应用u(x)使得浮动图像T的像素点x=(x1,x2)t变化后而得到的灰度值与参照图像R的灰度值近似相同或相同。主要思想是通过对函数D(u(x))=‖R(x)-T(x-u(x))‖2进行极小化,该文是对非线性函数D(u(x))在当前点线性化估计,但是二次极小化问题也许会出现病态,这样就需要一个辅助的光滑弹性项来对其最小二乘泛函进行惩罚,本文介绍了相应的算法描述。
This paper introduces a trust region method to obtain a displacement vector field u(x)=(u1(x),u2(x))t,which matches two images recorded with the same imaging machinery.The displacement vector should transform the image location x =(x1,x2)t of an image T,such that the grey level are equal to another image R.The problem leads to minimize the nonlinear least squares functional D(u(x))=‖R(x)-T(x-u(x))‖2.To apply the Newton iteration method,we replace the nonlinear functional D(u(x)) by its linearization around a current approximation.But the quadratic minimization problem is ill-posed,.We use an auxiliary linear elasticity term,which incorporates smoothness constraints to the displacement field.
作者
刘天宝
高艳超
孙佳慧
程毅
LIU Tian-bao,GAO Yan-Chao,SUN Jia-hui,CHENG Yi(Math Office,Aviation University of Air Force,Changchun 130022,China)
出处
《电脑知识与技术》
2010年第6期4500-4501,共2页
Computer Knowledge and Technology
关键词
图像配准
最小二乘泛函
信赖域法
Image registration
least squares functional
trust region method