期刊文献+

基于欧氏几何的多进制LDPC码的设计

Non-Binary LDPC Codes Design Based on Euclidean Geometries
下载PDF
导出
摘要 提出了一种构造多进制低密度奇偶校验(LDPC)码的欧氏几何方法,这种码具有至少为6的围长,并且具有很好的迭代解码性能,能用简单移位寄存器和线性复杂度来解码,也可以用半并行方法来解码。仿真结果表明这种码比二进制LDPC码有更好的性能。 This paper presents a Euclidean geometric approach to the construction of Non-Binary low-density parity-check(LDPC) codes.Codes of this class have girth at least 6.They perform very well with iterative decoding.Furthermore,these codes can be decoded with simple shift registers,with linear complexity and decoded in the semi-parallel way.The simulation results show that their performance is much better than the binary LDPC codes.
出处 《电脑知识与技术》 2010年第6期4520-4522,共3页 Computer Knowledge and Technology
基金 国家自然科学基金(60773085 60773012) 国家863计划(2006AA01Z255) 湖南省自然科学基金(07JJ3128) 中国博士后科学基金(20070420184)
关键词 多进制 LDPC码 欧氏几何 线 non-binary LDPC codes euclidean geometric line point
  • 相关文献

参考文献12

  • 1R.G.Gallager.Low density parity check codes[J].IRE Trans.Inform.Theory,1962,8(1):21-88.
  • 2R.M.Tanner.A recursive approach to low complexity codes[J].IEEE Trans.Inform.Theory,1981,27(5):533-547.
  • 3D.J.C.MacKay and R.M.Neal.Near shannon limit performance of low density parity check codes[J].Electron.Lett.,1997,33(6)"457-458.
  • 4Y.Kou,S.Lin and M.P.C.Fossorier.Low-density parity-check codes based on finite geometries:arediseovery and new results[J].IEEE Trans.Inform.Theory,2001,47(7):2711-2736.
  • 5M.C.Davey.Error-correction using low density parity check codes[M].Ph.D thesis.,University of Cambridge,UK,1999.
  • 6D.J.C.MacKay.Good Error-Correcting codes based on very sparse matrices[J].IEEE Transactions on Information Theory,1999,45(2):399-431.
  • 7T.Richardson and R.Urbanke.The capacity of low-density parity-check codes under message-passing decoding[J].IEEE Transaction on Information Theory,2001.2,47(2):599-618.
  • 8M.C.Davey and M.Fossorier.Low density parity check codes over GF(q)[J].IEEE Commun.Lett.,1998,2(6):165-167.
  • 9T.Kasami,S.Lin,and W.Peterson.Polynomial codes[J].IEEE Trans.Inform.Theory,1968,14(6):807-814.
  • 10X.Y.Hu,E.Eleftheriou and D.M.Arnold.Regular and Irregular Progressive Edge-Growth Tanner Graphs[J].IEEE Trans.on Inf.Theory,2005,51(1):386--398.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部