期刊文献+

二维定常不可压缩粘性流动N-S方程的数值流形方法 被引量:12

Numerical manifold method for steady incompressible viscous 2D flow Navier-Stokes equations
下载PDF
导出
摘要 将流形方法应用于定常不可压缩粘性流动N-S方程的直接数值求解,建立基于Galerkin加权余量法的N-S方程数值流形格式,有限覆盖系统采用混合覆盖形式,即速度分量取1阶和压力取0阶多项式覆盖函数,非线性流形方程组采用直接线性化交替迭代方法和Nowton-Raphson迭代方法进行求解。将混合覆盖的四节点矩形流形单元用于阶梯流和方腔驱动流动的数值算例,以较少单元获得的数值解与经典数值解十分吻合。数值实验证明,流形方法是求解定常不可压缩粘性流动N-S方程有效的高精度数值方法。 Manifold method for direct numerical solution of steady incompressible viscous Navier-Stokes equations is developed in this paper.Where numerical manifold schemes are derived based on Galerkin weighted residuals method,mixed cover with the first order polynomial functions for velocity components and constant function for pressure is adopted in finite cover system,and nonlinear manifold equations are solved by direct iteration and Nowton-Raphson iteration methods.As an application,mixed cover 4-node rectangular manifold element is used for computation and analysis of flow in square chamber and flow past a step,numerical solutions obtained with few elements are in very good agreement with classical data.Numerical testes indicate that manifold method is an effective and high order accurate numerical method for Navier-Stokes equations of steady incompressible viscous flow.
机构地区 广东工业大学
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第3期415-421,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50775044 50975050) 教育部博士点基金(20050562003)资助项目
关键词 不可压缩粘性流动 N-S方程 数值流形 steady incompressible viscous flow Navier-Stokes equations numerical manifold method
  • 相关文献

参考文献15

  • 1Shuangzhang TU, Aliabadi S. Development of a hybrid finite volume/element solver for incompressible flows[J]. Int J Numer Methods Fluids ,2007,55(2) : 177-203.
  • 2Jing Gong, Nordstrom J. A stable and efficient hybrid scheme for viscous problems in complex geometries[J]. J Comput Phys ,2007,226(2):1291-1309.
  • 3Zienkiewicz O C, Cheung Y K. Finite Element in Solution of Field Problems[J]. The Engineer, 1965, 220:507-510.
  • 4Ammara I, Masson C. Development of a fully coupled control-volume finite element method for the incompressible Navier-Stokes equations[J]. Int J Nurner Methods Fluids, 2004,44(6) : 621-644.
  • 5Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. Washington DC: Hemisphere, 1980.
  • 6Faure S, Laminie J ,Temam R. Finite volume discretization and multilevel methods in flow problems[J]. J Sci Comput,2005,25(1-2) :231-261.
  • 7Shi G H. Manifold method[A]. Proc. of the First Int. Forum on Discon. Defor. Anal. & Simu. of Discon [C]. Media, California,USA. 1996:52-204.
  • 8Shi G H. Manifold method of material analysis[A]. Transactions of the ninth army conference on applied mathematics and computing[C]. Minneapolis. Minnesoda, USA, 1992:51-76.
  • 9Terada K, Ishii T, Kyoya Y, et al. Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures [J]. Comput Mech ,2007,39(2):191-210.
  • 10Suzuki K, Ohtsubo H, Hino Kei. Analysis of fracture mechanism using adaptive finite cover method [J]. Nippon Kikai Gakkai Ronbunshu A, 2004,70(3):399-405.

二级参考文献21

共引文献20

同被引文献87

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部