期刊文献+

基于近似模型的非线性区间数优化方法及其应用 被引量:14

Approximation model based nonlinear interval number optimization method and its application
下载PDF
导出
摘要 在不确定优化中,非线性区间数优化方法由于需要嵌套优化,造成计算效率低下而阻碍其应用于工程实际。本文提出了一种基于径向基函数近似模型的求解方法,以提高非线性区间数优化方法的计算效率。该方法利用拉丁超立方实验设计方法采样,建立目标函数和各约束的径向基函数近似模型。利用近似模型代替嵌套优化中的真实模型,再用非线性区间数优化方法进行求解,从而提高了非线性区间数优化方法的计算效率,使得该算法在工程应用方面成为可能。用一个测试函数验证了该方法的可行性,最后将方法应用于车身薄壁梁的耐撞性优化。 The nested optimization existing in the nonlinear interval number optimization will lead to a low efficiency.An efficient method is suggested to promote the efficiency based on approximation models using the radial basis functions.Firstly,the approximation models are created for the objective function and constraints with the samples obtained from Latin hypercube design method.The actual models are replaced by the approximation models and this approximate optimization problem is solved by the nonlinear interval number optimization method.The computation efficiency is improved greatly and whereby it seems possible to apply the nonlinear interval number optimization method to practical engineering problems.A numerical test is investigated to demonstrate the effectiveness of the present method,and this method is successfully applied to the structural crashworthiness optimization of a thin-wall beam.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第3期451-456,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10802028) 汽车车身先进设计制造国家重点实验室自主课题(60870003 70870002)资助项目
关键词 不确定优化 区间数 非线性优化 径向基函数近似模型 耐撞性优化 uncertain optimization interval number nonlinear optimization radial basis function approximation model optimization of structural crashworthiness
  • 相关文献

参考文献11

  • 1Cho Gyeong-Mi. Log-barrier method for two-stage quadratic stochastic programming[J]. Applied Mathematics and Computation, 2005,164(1) : 45-69.
  • 2Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming[J]. Fuzzy Sets and Systems, 2001,119:129-138.
  • 3Stahl V Aachen. A sufficient condition for non-overestimation in interval arithmetic[J]. Computing, 1997,59:349-363.
  • 4Jiang C, Han X, Liu G R. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008,188 : 1-13.
  • 5Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196 : 4791-4800.
  • 6Jiang C, Han X. A new uncertain optimization method based on intervals and an approximation management model[J]. CMES-Computer Modeling in Engineering & Science ,2008,344(1) : 1-21.
  • 7Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function[J]. European Journal of Operational Research, 1990, 48:219-130.
  • 8刘新旺,达庆利.一种区间数线性规划的满意解[J].系统工程学报,1999,14(2):123-128. 被引量:46
  • 9Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiple modeling criteria[J]. Journal of Structural and Multidisci plinary Optimization ,2001,23(1) : 1-13.
  • 10穆雪峰,姚卫星,余雄庆,刘克龙,薛飞.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(5):608-612. 被引量:152

二级参考文献10

  • 1Tong S,Fuzzy Sets Systems,1994年,66卷,301页
  • 2GOLOVIDOV, OLEG B, MASON, et al. Response Surface Approximations for Aerodynamic Parameters in High Speed Civil Transport Optimization[A]. Technical Report,Computer Science[DB/OL], Virginia Polytechnic Institute and State University. http://historical.ncstrl.org/tr/ps/vatechcs/TR-97-15.ps.
  • 3KNILL D L, GIUNTA A A, BAKER C A, et al. Response surface models combining linear and euler aerodynamics for supersonic transport design[J]. J Aircraft, 1999,36(1):75-86.
  • 4UNAL R, LEPSCH R A, MCMILLIN M. Response Surface Model Building and Multidisciplinary Optimization Using D-Optimal Designs[A]. Colle-ction of Technical Papers for 7th Annual AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C].1998,405-411.
  • 5JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodeling techniques under multiple modeling criteria[J]. Journal of Structural and Multidisciplinary Optimization, 2001,23(1):1-13.
  • 6GIUNTA A A, DUDLEY J M, NARDUCCI R, et al. Noisy Aerodynamic Response and Smooth Approximations in HSCT Design[A]. Proceedings of the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Panama City Beach, FL, AIAA Paper94-4376, 1994,1117-1128.
  • 7GIUNTA A A, WATSON L T. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models[A]. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidiscipli-nary Analysis & Optimization[C]. St. Louis, MO, AIAA, September 2-4, 1998, 1:392-404.
  • 8SOREN N. Lophaven, Hans Bruun Nielsen, Jacob Sondergaard. Aspects of the Matlab Toolbox DACE[A]. Report IMM-REP-2002-12, Informatics and Mathematical Modeling[DB/OL],Technical Univer-sity of Denmark,2002. http://www.imm.dtu.dk/-hbn/dace/.
  • 9SOREN N. Lophaven, Hans Bruun Nielsen, Jacob Sondergaard. DACE A Matlab Kriging Toolbox[A].Report IMM -REP-2002-13,Informatics and Mathematical Modeling[DB/OL].Technical Univer-sity of Denmark, 2002. http://www.imm.dtu.dk/-hbn/dace/.
  • 10侯军虎,王松岭,安连锁,胡海燕.基于参数映射的通风机流量全程测量的实验研究[J].中国电机工程学报,2003,23(10):209-214. 被引量:36

共引文献196

同被引文献136

引证文献14

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部