期刊文献+

基于微粒群算法的盲解卷积及其在故障轴承声信号中的应用 被引量:1

PSO-based Blind Deconvolution Algorithm and Its Application in Bearing Fault Detection by Acoustical Analysis
下载PDF
导出
摘要 针对复杂机械声场中,盲解卷积算法分离滤波器长度估计困难的问题,提出一种用微粒群算法优化盲解卷积分离滤波器长度的改进方法,解决了估计结果不确定的问题。该方法以分离信号峭度最大值的倒数为微粒群搜索的适应度,利用微粒群算法搜索到最优的分离滤波器长度,获得了可靠稳定的估计结果。计算机仿真和实际环境中故障轴承声信号分离实验证明了该方法的有效性。 In complex mechanical sound field,it is very difficult to set the length of separation filters of blind deconvolution algorithm which generally leads to the separation results uncertain.Here,an improved blind deconvolution based on PSO algorithm was proposed.The reciprocal of maximize kurtosis was used to be as fitness function,and the optimal length of the separation filters can be selected by the PSO algorithm.With the help of the enhancement,good results can be obtain.Results of simulation and acoustical signals of faulty rolling bearings measured in actual environment were presented to demonstrate that the method is availability.
机构地区 昆明理工大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2010年第12期1457-1461,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50805071) 云南省教育厅科学研究基金资助项目(08J0009)
关键词 微粒群算法 盲解卷积 声学故障诊断 滚动轴承 particle swarm optimization(PSO) blind deconvolution acoustics-based diagnosis rolling bearing
  • 相关文献

参考文献6

  • 1Eringen A C. Nonlocal Micropolar Field Theory in Contimuum Physics [M]. New York: Acadamic Press, 1976.
  • 2Eringen A C. Line Crack Subjected to Shear[J]. International Journal of Fracture, 1978,14: 367-369.
  • 3Eringen A C. Line Crack Subjected to Anti-plane Shear[J]. Engineering of Fracture, 1979,12(3) : 211- 219.
  • 4Sun X,Douglas S C. A Natural Gradient Convolutive Blind Source Separation Algorithm for Speech Mixtures [ C ]//IEEE International Conference on Acoustics 2001. San, Diego, California, 2001: 59-63.
  • 5黄之初,张家凡.滚动轴承故障脉冲信号提取及诊断∶一种盲解卷积方法[J].振动与冲击,2006,25(3):150-154. 被引量:12
  • 6Simon C. Fast Communication Separation of a Class of Convolutive Mixtures: a Contrast Function Approach[J]. Signal Processing, 2001,81 (4) : 884-887.

二级参考文献10

  • 1Liu B, Ling S F, Gribonval R. Bearing failure detection using matching pursuit. NDT&E Int. 2002, 35:255-262
  • 2Lin Jing, Qu Liangsheng. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and vibration . 2000,234 ( 1 ) : 135-148
  • 3Lin J, Zuo M J. Gearbox fault diagnosis using adaptive wavelet filter. Mechanical Systems and Signal Processing . 2003, 17(6) : 1259~1269
  • 4Hu Yuhen, Hwang Jenq - Neng. Handbook of neural network signal processing. Florida : CRC Press,2002
  • 5Hyvarinen A, Karhunen J, Oja E. Independent component analysis. New York: Wiley, 2001
  • 6Shalvi O, Weinstein E. New criteria for blind deconvolution of non -minimum phase systems (channels). IEEE Trans. on Information Theory, 1990,36(2):312-321
  • 7Shalvi O, Weinstein E. Super - exponential methods for blind deconvolution. IEEE Trans. on Information Theory, 1993,39(2) :504-519
  • 8http://www. eecs. cwru. edu/laboratory/bearing, Bearing Data Center Website, Case Western Reserve University
  • 9孟庆丰,范虹,王祺,何正嘉.匹配追踪信号分解与往复机械故障特征提取技术研究[J].西安交通大学学报,2001,35(7):696-699. 被引量:14
  • 10唐英,孙巧.滚动轴承振动信号的小波奇异性故障检测研究[J].振动工程学报,2002,15(1):111-113. 被引量:16

共引文献11

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部