期刊文献+

线性/非线性系统混合滤波 被引量:1

Mixed Filtering of Linear/Nonlinear System
下载PDF
导出
摘要 针对采用混合坐标系的跟踪系统,提出线性/非线性系统混合滤波方法(SRUKF-KF算法)。该方法用SR-UKF估计系统状态空间模型中的非线性部分,用SR-KF估计其线性部分,提高了线性部分估计的精度和运算效率。仿真结果表明,该方法具有较强数值稳定性,较高估计精度和较好的实时性。 A mixed filtering method of linear/nonlinear system (SRUKF-KF algorithm) is presented in terms of tracking system with mixed coordinate system. In the method, the nonlinear parts of a system model are estimated with SR-UKF while its linear parts are estimated with the SR-KF, which enhances the accuracy and the computation efficiency of linear parts estimation. The simulation results show that the method is of stronger numerical stability, higher accuracy and real-time quality.
出处 《现代防御技术》 北大核心 2010年第3期104-107,共4页 Modern Defence Technology
基金 航空基金(20090196005)
关键词 线性/非线性系统 混合滤波 SRUKF—KF 非线性滤波 目标跟踪 linear/nonlinear system mixed filtering square-root unscented Kalman filter and Kalman filter(SRUKF-KF) nonlinear filtering target tracking
  • 相关文献

参考文献6

  • 1RUDOLPH V M. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models [ C ]. In Workshop on Advances in Machine Learning Montreal. June 2003.
  • 2DOUCET A , GODSILLI S , ANDRIEU C . On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[ Jl. Statistics and Computing, 2000, ( 10 ) : 1197 - 1208.
  • 3FREITAS N . Rao - Blackwellised Particle Filtering for Fault Diagnosis [ C ] jj IEEE Aerospace Conference Proceedings. 2002,4 : 1767-1772.
  • 4MUSTIERE F , BOLIC M , BOUEHARD M. Rao - Black - wellised Particle Filtersl Examples of Applications [ C ]// IEEE Canadian Canference on Electrical and Computer Engineering( CCECE ). Ottawa, Canada, 2006.
  • 5van der Merwe R, WAN E. The Square-Root Unscented Kalman Filter for State-and Parameter-Estimation [ C 1 // In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6, Salt Lake City, UT,May2001:3461-3464.
  • 6尹建君,张建秋,林青.Unscented卡尔曼滤波-卡尔曼滤波算法[J].系统工程与电子技术,2008,30(4):617-620. 被引量:19

二级参考文献10

  • 1Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000 (10) : 197 - 208.
  • 2Doucet A. On sequential simulation-based methods for Bayesian filtering[R]. Technical report CUED/F-INFENG/TR 310, Cambridge University Engineering Department, 1998.
  • 3Mustiere F, Bolic M, Bouchard M. Rao-Blackwellised particle filters: examples of applications[C]//IEEE Canadian Conference on Electrical and Computer Engineering ( CCECE).Ottawa, Canada, 2006.
  • 4Doucet A, Freitas N, Gordon N J. Sequential Monte Carlo in practice[M]. New York : Springer, 2001.
  • 5Freitas N. Rao-blackwellised particle filtering for fault diagnosis[C]// IEEE Aerospace Conference Proceedings, 2002,4 : 1767 - 1772.
  • 6Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[C]//Proc. of AeroSense : The l lth International Symposium on Aerospace/Defence Sensing, Simulation and Controls, SPIE, Orlando, Florida, USA, 1997:182- 193.
  • 7Merwe R, Doucet A, Freitas N, Wan E. The unscented particle filter[R]. Technicalreport CUED/F-INFENG/TR 380, Cambridge University Engineering Department, 2000.
  • 8Morelande M R, Ristic B. Reduced sigma point filtering for partially linear models[C]//ICASSP, 2006 : 37 - 40.
  • 9Mustiere F, Bolic M, Bouchard M. A modified Rao-blackwellised particle filter[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006:21 - 24.
  • 10Steven M K.统计信号处理基础-估计与检测理论[M].罗鹏飞,张文明,刘忠,译.北京:电子工业出版社,2003:477-478.

共引文献18

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部