期刊文献+

基于Gauss伪谱法的有限推力轨道转移优化 被引量:3

Optimal Orbit Transfer with Finite Thrust Based on Gauss Pseudospectral Method
下载PDF
导出
摘要 研究了Gauss伪谱法在有限推力轨道转移优化问题中的应用。首先在消除奇点的拟春分点轨道要素的非奇异摄动方程基础上,选取性能指标为能量最优,控制变量为有限推力发动机加速度的3个分量;然后,利用Gauss伪谱法将最优控制问题转化为非线性规划问题,避开了求解两点边值问题的困难;最后给出了2个算例,分别计算了同面转移轨道和异面转移轨道的能量最优化转移。计算过程及结果表明本文所用方法对初值猜测敏感度较小,且平稳收敛,具有一定的鲁棒性,转移轨道平稳光滑,能够满足各种约束条件,便于对发动机进行控制,且在零倾角零偏心率轨道情况下不产生奇异。因此,Gauss伪谱法可用来求解轨道转移优化问题。 A finite-thrust orbital transfer optimization problem based on pseudo-equinoctial elements is studied by applying a new optimal control method on the basis of Gauss pseudospectral method.Using the pseudo-equinoctial elements in dynamics equations as state variables,optimality condition is derived and the optimizing problem is converted into nonlinear programming problem(NLP).The application of Gauss pseudospectral method enables to avoid the difficulty of calculating two-point boundary value and the derivation of dynamics equations is converted into static parameter optimization problem.The state variables and control variables are selected as optimal parameters at all collocation nodes.At last,two numerical examples of orbital transfer with coplanar and different planes are analyzed respectively.The simulation results demonstrate that Gauss pseudospectral method has low sensitiveness in conditions initializing of orbital transfer and the optimal solution is fairly good in robustness and easy to control.The precision and efficiency of this trajectory optimization method are demonstrated by applying to space vehicle orbital transfer with finite thrust optimization problem.
出处 《航天控制》 CSCD 北大核心 2010年第3期38-41,46,共5页 Aerospace Control
关键词 GAUSS伪谱法 拟春分点轨道要素 有限推力 轨道转移优化 Gauss pseudospectral method Pseudo-equinoctial elements Finite thrust Optimal orbital transfer
  • 相关文献

参考文献11

  • 1Betts J T.Very Low-thrust Trajectory Optimization Using a Direct SQPMethod[J].Journal of Computational and Applied Mathematics,2000,120(1):27-40.
  • 2Fahroo F.Direct Trajectory Optimization by a Chebyshev Pseudospectral Method[J].Journal of Guidance,Control and Dynamics,2002,25(1):160-166.
  • 3Geoffrey T,Huntington A V R.Optimal Configuration of Spacecraft Formations via a Gauss Pseudospectral Method[J].AAS 05-103,2005.
  • 4Sang Dong Kim B S.Adjoint Pseudospectral Least-squares Methods for an Elliptic Boundary Value Problem[J].Applied Numerical Mathematics.2009,59:334-348.
  • 5Hakan I,Tarman H B.A Spectral Collocation Algorithm for Two-point Boundary Value Problem in Fiber Raman Amplifier Equations[J].Optics Communications,2009,282(8):1551-1556.
  • 6梁新刚,杨涤.有限推力下时间最优轨道转移[J].航天控制,2007,25(1):46-51. 被引量:12
  • 7涂良辉,袁建平,罗建军.基于伪光谱方法的有限推力轨道转移优化设计[J].宇航学报,2008,29(4):1189-1193. 被引量:12
  • 8蔡婉花,和兴锁.混合遗传算法在航天器最优交会中的应用[J].飞行力学,2008,26(4):77-80. 被引量:6
  • 9Walker M.A Set of Modified Equinoctial Orbit Elements[J].Celestial Mechanics and Dynamics Astronomy,1985,38(4):391-392.
  • 10Bate R R.航天动力学基础[M].吴鹤鸣,李肇杰,译.北京:北京航空航天大学出版社,1990.

二级参考文献24

  • 1梁新刚,杨涤.应用非线性规划求解异面最优轨道转移问题[J].宇航学报,2006,27(3):363-368. 被引量:10
  • 2Kechichian,J.A.The Optimization of Continuous Constant Acceleration Transfer Trajectories in the Presence of the J2 Perturbation[J].AAS 99 -405,Aug.1999
  • 3Kechichian,J.A.Minimum-time Low-thrust Rendezvous and Transfer Using Epoch Mean Longitude Formulation[J].Journal of Guidance,Control,and Dynamics.1999,22(3):421 ~432.
  • 4Chuang,Jason C.H.,Goodson,T.D.,Hanson,J.Multiple-burn Familes of Optimal Low-and-medium-thrust Orbit Transfer[J].Journal of Spacecraft and Rocket.1999,36(6):866 ~ 874.
  • 5Betts,J.T.and Erb,S.O.Optimal Low Thrust Trajectories to the Moon[J].SIAM Journal of Applied Dynamical System,2003,2 (2):144 ~ 170.
  • 6Betts,J.T.Very Low-thrust Trajectory Optimization Using a Direct SQP Method[J].Journal of Computational and Applied Mathematics,2000,120(1):27 ~ 40.
  • 7Herman,A.L.and Spencer,D.B.Optimal Low-thrust Earth-orbit Transfers Using High-order Collocation Methods[J].Journal of Guidance,Control,and Dynamics,2002,25(1):40 ~47.
  • 8Gao Yang.Advances in Low-thrust Trajectory Optimization and Flight Mechanics[D].Univercity of MissouriColumbia,2003.
  • 9R H Byrd,M E.Hribar,J Nocedal.An Interior Point Algorithm for Large Scale Nonlinear Programming[J].SIAM Journal on Optimization,1999,9 (4):877 ~900.
  • 10Battin R H.An Introduction to the Mathematics and Methods of Astrodynamics,Revised Edition[M].AIAA Education Series,AIAA,1999:490 ~ 494.

共引文献33

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部