期刊文献+

一种基于RBF网络的参数自调整REM算法 被引量:2

Parameter Self-regulation REM Algorithm Based on RBF Neural Network
下载PDF
导出
摘要 针对传统的随机指数标记(Random Exponential Marking,REM)算法存在参数难以调整的缺陷,提出了一种改进型主动队列管理算法——基于RBF网络的参数自调整REM算法。利用RBF神经网络动态地对算法参数进行调整,使其能够适应不断变化的网络环境。该算法将REM算法在一定条件下近似为比例积分控制,使REM算法参数调节近似等效于比例积分系数的调节,简化了参数调节,提高了算法的实时性。仿真实验表明:该算法优于传统的REM算法,具有良好的鲁棒性及较快的调节速率。 Aiming at the shortcoming of random exponential marking(REM) algorithm,whose parameters are difficultly regulated,this paper proposes a new RBF neural-network-based REM algorithm in which REM parameters are tuned via RBF network technique.By approximating the REM algorithm via PI control under certain conditions,the regulation of REM parameters is equivalent to adjust the coefficients P and I.Thus,the process of regulation may be simplified and the real time control performance may be promoted.The simulation results show that the proposed algorithm can effectively adapt to dynamic network environments,and attain quicker adjusting.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期428-432,共5页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60674015) 上海教委科技创新重点项目(09ZZ60) 上海市重点学科项目(B504)
关键词 网络拥塞控制 主动队列管理 随机指数标记(REM) 比例积分控制 RBF神经网络 network congestion control active queue management REM proportional integral control RBF neural network
  • 相关文献

参考文献7

  • 1Jain R. Myths about congestion management in high-speed networks [J]. Internet Working: Research and Experience, 1992,3(2) : 101-113.
  • 2Floyd S, Jacobson V. Random early detection gateways for congestion avoidance [J]. IEEE/ACM Transactions on Net working,1993,1(4) :397-413.
  • 3Floyd S, Gummadi R, Shenker S. Adaptive RED:An algorithm for increasing the robustness of RED's active queue management[EB/OL]. http://www. Icir. Org/--floyd, 2001.
  • 4Wu chang feng, Kandlur D, Saha D, et al. The blue active queue management algorithms [J]. IEEE/ACM Transactions on Networking,2002,10(4) :513-528.
  • 5Hollot C V,Misra V,Towsley D,et al. On designing improved controllers for AQM routers supporting TCP flows [J]. IEEE Communications Society,2001,3(4) : 1726-1734.
  • 6At.huraliya S,Li V H, Low S H, et al. REM: Active queue management[J]. IEEE Network,2001,15(3) :48- 53.
  • 7Tian yu ping. A general stability criterion for congestion control with diverse communication delays [J]. Automatic, 2005 41(7) :1255-1262.

同被引文献16

  • 1王晓曦,王秀利,周津慧,王永吉.NS2网络仿真器功能扩展方法及实现[J].小型微型计算机系统,2004,25(6):1009-1014. 被引量:12
  • 2魏蛟龙,肖艳华,张弛.NS体系结构及其扩展[J].计算机仿真,2004,21(8):179-182. 被引量:11
  • 3陈亚军,肖建华.基于NS-2的网络仿真与扩展[J].计算机系统应用,2005,14(5):84-87. 被引量:11
  • 4Zheng Changyong, Dai Yuehua, Chen Junning. Is current ac- tive queue management really necessary[ C]//Proc. of the 1st International Workshop on Education Technology and Comput- er Science. Washington DC : IEEE Computer Society, 2009 : 538-541.
  • 5Stanojevic R, Shorten R N, Kellett C hi. Adaptive tuning of drop-tail buffers for reducing queueing delays [ J ]. IEEE Communications Letters,2006,10 (7) : 570 -572.
  • 6Floyd S, Jacobson V. Random early detection gateways for congestion avoidance[ J]. ACM/IEEE Trans. on Networking, 1993,1 (4) :397-413.
  • 7Floyd S. Recommendation on using the "Gentle" variant ofRED algorithm [ EB/OL]. 2008 - 11 - 15. http://www, icir. org/floyd/red/gentle. Html.
  • 8Feng Wuchang,Kandlur D D,Saha D,et al. A self-configu- ring RED gateway [ C ]//Proc. of IEEE INFOCOM. New York : IEEE Communications Society, 1999 : 1320-1328.
  • 9张少博,李钢,康军.基于神经网络监督控制的拥塞控制算法研究[J].计算机应用研究,2010,27(2):657-660. 被引量:6
  • 10范纪松,武欣嵘,刘杰.一种改进RED算法稳定性研究[J].系统仿真学报,2010,22(7):1711-1715. 被引量:2

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部