摘要
文中利用非线性动力学理论讨论了Rikitake双盘发电机模型的混沌特性。数值计算得到该模型的定态解,并分析了该定态解的稳定性。利用数值仿真,得到该模型在一定参数和初始状态下的吸引子。利用全局分岔图和最大Lyapunov指数谱表征了系统在μ∈[0.1,7]时具有的丰富的动力学行为,利用耦合混沌同步方法实现了该发电机模型的混沌同步。
This paper discusses the chaotic characteristic of the Rikitake two-disk dynamo,based on nonlinear dynamics theory,provides the fixed points of the dynamo obtained by numerical calculation,and offers an analysis of their stabilities.The paper gives the chaotic attractors with certain parameters and initial conditions on different phase spaces through numerical simulation,presents the abundance dynamical behaviors by the global bifurcation graph and the largest Lyapunov exponent spectrum when the parameter μ∈,and shows that the chaos synchronization of the dynamo is realized by the coupling synchronization.
出处
《黑龙江科技学院学报》
CAS
2010年第3期216-219,共4页
Journal of Heilongjiang Institute of Science and Technology
基金
甘肃省教育厅科研基金项目(0808-04)
天水师范学院科研基金项目(TSB0818
TSB0721)
关键词
混沌吸引子
分岔
最大LYAPUNOV指数
分维
混沌同步
chaotic attractor
bifurcation
largest Lyapunov exponent
fractal dimension
chaos synchronization