期刊文献+

一类三阶非局部共振问题解的存在性

Existence of solution to problem on third order three-point resonance boundary value
下载PDF
导出
摘要 为了研究一类非线性三阶三点边值问题,利用Mawhin连续性定理,得到该问题解的存在性的充分条件,并应用Taylor定理对解进行先验估计。所用技术在一定程度上开拓了该类问题解的先验估计的思路。 In order to study a class of nonlinear third-order three-point boundary value problem,this paper introduces the sufficient conditions of the existence of solutions to the problem obtained by using the Mawhin coincidence degree theory and the first application of Taylor theorem to priori estimate of the solution.The proposed skill serves to enrich the priori estimate of the solution.
出处 《黑龙江科技学院学报》 CAS 2010年第3期233-236,共4页 Journal of Heilongjiang Institute of Science and Technology
关键词 非线性微分方程 共振 迭合度 存在性 nonlinear differential equation resonance coincidence degree existence
  • 相关文献

参考文献6

  • 1徐玲.一类二阶Neumann边值共振问题解的存在性[J].西北师范大学学报(自然科学版),2008,44(2):11-13. 被引量:1
  • 2LIU B,ZHAO Z L.A note on multi-point boundary value problems[J].Nonlinear Anal,2007,67(9):2 680-2 689.
  • 3LIU B.Periodic solutions of a nonlinear second-order differential equation with deviating argument[J].Math.Anal.Appl,2005,309(1):313-321.
  • 4郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].2版.济南:山东科学技术出版社,2006.
  • 5MAWHIN J.Topological degree and boundary value problem for nonlinear differential equations[M] //FITZPATRICK P,MAR-TELLI M,MAWHIN J,et al.Topoiogical Methods for Ordinary Differential Equations,in:Lecture Notes in Mathematics,Vol.1 537.New York,Berlin:Springer-Verlag,1991:74-142.
  • 6暴宁伟.奇异一阶微分方程周期边值问题的正解[J].河北工程大学学报(自然科学版),2008,25(2):98-100. 被引量:6

二级参考文献11

  • 1暴宁伟.一类高阶微分方程边值问题正解的存在性[J].河北工程大学学报(自然科学版),2007,24(2):108-110. 被引量:4
  • 2郭大均.非线性泛函分析[M].济南:山东科技出版社,1995..
  • 3AGARWAL R P, RFX;AN D O. A note on existence of non- negative solutions to singular semipositone problems[ J]. Non-linear Analysis, 1999,36(2) : 615 - 622.
  • 4JIANG Da-qing,LIU Hui-zhao.Existence of positive solutions to second order Neumann boundary value problems[J].Journal of Mathematical Research and Exposition,2000,20:360-364.
  • 5SUN Jian-ping,LI Wan-tong.Multiple positive solutions to second-order Neumann boundary value problems[J].Appl Math Comput,2003,146:187-194.
  • 6SUN Jian-ping,LI Wan-tong,CHENG Sui-sun.Three positive solutions for second-order Neumann boundary value problems[J].Applied Mathematics Letters,2004,17:1079-1084.
  • 7SANTANILLA J.Solvability of a nonlinear boundary value problem without Landersman-Lazer condition[J].Nonlinear Analysis,1989,13:683-693.
  • 8CABADA A,HABETS P,POUSO R L.Optimal existence conditions for φ-Laplacian equations with upper and lower solutions in the reversed order[J].J Differential Equations,2000,166:385-401.
  • 9刘辉昭,蒋达清,赵胜民.一阶急式微分方程周期边值问题(英文)[J].数学杂志,1999,19(2):157-160. 被引量:3
  • 10万阿英,蒋达清.奇异超线性二阶周期边值问题的正解[J].吉林大学自然科学学报,2001(2):25-27. 被引量:10

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部