期刊文献+

基于趋势检查法的遗传神经网络模型及工程应用 被引量:1

A genetic neural network model based on a trend examination method and engineering application
原文传递
导出
摘要 针对神经网络中模型可靠性问题,提出了趋势检查法的思路,采用评价指标中评价等级的影响趋势对模型进行检查,基本过程为不断调整模型参数、训练、趋势检查,直到获得最优模型。趋势检查法为一种通用方法,可用于任何基于先知经验方法的模型可靠性检查,为模型可靠性检查提供了一种新思路。对于神经网络学习样本贡献度不同的问题,采用样本加权的方法,对样本进行预处理,并将样本权值应用于神经网络的目标函数中,由此建立了加权神经网络目标函数。最后引入遗传算法来优化神经网络参数,建立了基于趋势检查法的遗传神经网络模型,并应用于实际工程中的围岩分类问题,结果表明该模型泛化能力强,具有较高的分类精度。 Aiming at the model’s reliability problem of a neural network,a trend examination method was presented to check the model’s reliability.It checked the model through the influence trend of evaluation index to evaluation grade.The process of the method was incessantly adjusting the model’s parameter,training,and trend examination,until the best model was obtained.This method presented a new idea and can be used in any problems of model’s reliability exami-nation based on the foreknowable experience method.To the problem of the contribution difference of samples,the method of weighted samples was used to preprocess the samples and the samples weight was used in the objective function of the neural network.Finally,a genetic algorithm was adopted to optimize the parameter of the neural network and a GA-ANN model based on the trend examination method was established.The improved model was applied to practical engineering a-bout surrounding rock classification and the results showed that this method can improve the neural network generalization ability and prediction accuracy.
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第3期113-118,共6页 Journal of Shandong University(Engineering Science)
基金 国家重点基础研究发展计划资助项目(2009CB724607) 教育部科学技术研究重点资助项目(108158) 国家自然科学基金资助项目(50908134) 中国博士后科学基金资助项目(20090461203)
关键词 神经网络 可靠性 样本 权重 围岩分类 neural network reliability samples weights surrounding rock classification
  • 相关文献

参考文献7

二级参考文献58

共引文献261

同被引文献19

  • 1杨智懿,熊亚选,张乾林.工作面瓦斯涌出量的神经网络模型预测研究[J].煤炭工程,2004,36(10):73-75. 被引量:25
  • 2薛鹏骞,吴立锋,李海军.基于小波神经网络的瓦斯涌出量预测研究[J].中国安全科学学报,2006,16(2):22-25. 被引量:27
  • 3张翔,肖小玲,徐光祐.基于最大熵估计的支持向量机概率建模[J].控制与决策,2006,21(7):767-770. 被引量:12
  • 4付华,许振良.煤矿瓦斯灾害特征提取与信息整合技术研究[D].辽宁:辽宁工程技术大学,2006:58-83.
  • 5杨敏,李瑞霞,汪云甲.煤一瓦斯突出的粗神经网络预测模型研究[J].计算机应用与工程,2010,46(6):241-244.
  • 6KARACAN C O. Modeling and prediction of ventilation methane emissions of U. S. long wall mines using supervised artificial neural networks[J]. International Journal of Coal Geology, 2008, 73(3-4) :371-378.
  • 7ZHANG Sheng, WANG Weihong, Ford James, et al. Using singular value decomposition approximation for collaborative filtering [C]// Proceedings of 7th IEEE International Conference on E-cormmerce Technology. California, USA: IEEE, 2005: 257-264.
  • 8JEAN G. Singular value decomposition(SVD) and polar form[ J ]. Geometric Methods and Applications, 2011, 1 (38) :367-385.
  • 9AHMAD A M. A new digital image watermarking scheme based on Schur decomposition [J]. Multimedia Tools and Applications, 2012, 59(3):851-883.
  • 10FU Hua, HUA Ming. Application of data fusion to environmental measurement in coal mine [C]// Proceedings of the 3th International Symposium on Precision Measurements. California, USA : AAAI, 2006 : 1-6.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部