期刊文献+

基于本体的Deep Web语义分类研究 被引量:3

Research on Deep Web semantic categorization based on ontology
下载PDF
导出
摘要 针对目前Deep Web分类研究中所采用的Post-query查寻探测方法缺乏语义支持的问题,提出一个基于本体的语义查询探测分类方法。主要思想如下:首先针对一个Deep Web数据库集合,提取查询接口中的属性及其实例,半自动建立领域本体,并且通过领域本体来表示类别特征;然后利用领域本体中的概念以及相应的实例构造语义查询集;最后对待分类的Deep Web数据库利用语义查询集进行查询探测,计算查询探测返回的结果文档在领域本体中的信息覆盖量,并以此对Deep Web进行分类。实验表明:这种语义查询探测分类的方法和以往的方法相比,在准确率、查全率和F1值上有一定的提高。 In view of the problem of lacking semantic support in the Post-query research of Deep Web databases classification,the paper designs a novel semantic query probing classification approach based on ontology.The main idea is as following: firstly,attributes and instances are extracted from query interface,which are used to build domain ontologies semi-automatically,and characteristics of categories are represented by domain ontologies.Then domain query instances are constructed from domain ontologies,which are used as query probing to Deep Web databases.Finally coverage degree between returned result documents of a query and domain ontologies are computed,with which the Deep Web database is classified.The experiments show that semantic query probing classification method we proposed has improved a lot in precision,recall and F1.
出处 《山东建筑大学学报》 2010年第2期118-124,共7页 Journal of Shandong Jianzhu University
基金 高等学校博士学科点专向科研基金(20070422107) 山东省科技攻关计划项目(2007GG10001002)
关键词 DEEP WEB分类 本体 语义 查询探测 Deep Web categorization ontology semantic query query probing
  • 相关文献

参考文献13

  • 1刘伟,孟小峰,孟卫一.DeepWeb数据集成问题研究[J/OL].http://idke.mc.edu.cn/reports/report2006/seminar%20summary/Deep%20Web,2007-12-05.
  • 2Barbosa L, Freire J, Silva A. Organizing hidden-web databases by clustering visible web documents[ A ]. 2007 IEEE 23rd International Conference on Data Engineering[ C]. Stanbul: IEEE Computer Society, 2007. 326 -335.
  • 3Peng Q, Meng W, He H,et al. WISE-cluster: clustering e-commerce search engines automatically [ A ]. Proceedings of the 6th ACM International Workshop on Web Information and Data Management[ C]. Washington: IEEE Computer Society,2004. 104 - 111.
  • 4Hedley Y L, Younas M, James A. The categorisation of hidden web databases through concept specificity and coverage[ A ]. 19th International Conference on Advanced Information Networking and Applications [ C ]. Washington : IEEE Computer Society, 2005. 671 - 676.
  • 5Gong Z G, Zhang J B, Liu Q. Hidden-web database exploration [ A]. Sixth International Conference on Intelligent Systems Design and Applications [ C ]. Washington : IEEE Computer Society, 2006. 838 - 843.
  • 6Caverlee J, Liu L, Buttler D. Probe, cluster, and discover:focused extraction of QA-pagelets from the deep web[ A]. 20th International Conference on Data Engineering [ C ]. Washington: IEEE Computer Society,2004. 103 -114.
  • 7Mouri T, Kitagawa H. Extracting new topic contents from hidden web sites[ A]. International Conference on Information Technology [ C]. Washington: IEEE Computer Society,2004. 314 -319.
  • 8Ch V S R,Chaudhary B D. a hierarchy of Search Engines based on ODP concepts[ A ]. 2006 IEEE/WIC/ACM International Conference on Web Intelligence[ C ]. Washington: IEEE Computer Society, 2006.728 -731.
  • 9Gal A, Eyal A, Roitman h [ CP/DK ]. http ://iew3. technion, ac.il/OntoBuilder, 2008-06-01.
  • 10Vinay K C, Adam F, Richard F, et al. OKBC: A proganunatic foundation for knowledge base interoperability[ A]. Proceedings of the fifteenth national/tenth conference on Artificial intelligence/ Innovative applications of artificial intelligence[ C]. Washington: IEEE Computer Society , 1998. 600 -607.

同被引文献38

  • 1胡保华,闻立波,杨根军,黄官平,吴慧,沈波,惠巍.基于MBD的三维数字化装配工艺设计及现场可视化技术应用[J].航空制造技术,2011,0(22):81-85. 被引量:19
  • 2吴健,吴朝晖,李莹,邓水光.基于本体论和词汇语义相似度的Web服务发现[J].计算机学报,2005,28(4):595-602. 被引量:218
  • 3VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4Koski T. , Noble J.. Bayesian Networks: an Introduction [ M ]. HoboKen:John Wiley and Sons Ltd. , 2011.
  • 5Friedman N., Geiger D., Goldszmidt M.. Bayesian network classifiers[J]. Machine Learning, 1997, 29 (2) : 131 -163.
  • 6Pernkopf F. , Bilmes J.. Discriminative versus generative parameter and structure learning of bayesian network classifiers [ A ]. Proceedings of the 22nd International Conference on Machine Llearning[ C]. Bonn Germany: ACM Press, 2005:657 -664.
  • 7Roos T. , Wettig H. , Grunwald P. , et al. On discriminative bayesian network classifiers and logistic regression [ J ]. Machine Learning, 2005, 59 (3) : 267 -296.
  • 8Greiner R. , Su X. Y. , Shen B.. Structural extension to logistic regression-discriminative parameter learning of belief net classifiers. [J]. Machine Learning, 2005, 59 (3): 297-322.
  • 9Jiang S., Harry Z., Charles X. L.. et al. Discriminative parameter learning for bayesian networks [ A ]. Proceedings of the 25th International Conference on Machine Learning [ C ]. New York: ACM, 2008: i016-1023.
  • 10Huang Kaizhu. , King I. , Lyu M. R.. Discriminative training of Bayesian Chow - Liu multinet classifiers [ A ]. Proceedings of the International Joint Conference on Neural Networks [ C ]. Portland, Oregon, 2003:484-488.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部