摘要
为提高支持向量聚类法对分布复杂、不均匀雷达辐射源信号样本聚类的正确率,提出一种结合剪辑近邻法、K-近邻法和支持向量聚类的无监督分类新方法。先采用支持向量聚类对所有未知样本作预分类,再按照一定的剪辑规则剪掉错误类别,最后利用K-近邻法对剪掉的样本按各已知类别不同分布进行加权分类。IRIS数据和辐射源信号聚类实验结果表明,此方法能平衡数据样本各局部分布,获得全局最优聚类分配。
To enhance the correct rate that support vector clustering(SVC) processes radar emitter signal samples with complex and uneven distributions,a novel unsupervised clustering method combining editing nearest-neighbor,K-nearest neighbor with SVC is presented.SVC is first employed to cluster unknown samples.Then wrong clusters are edited by using editing rules.Finally a K-nearest neighbor is introduced to classify the edited samples in terms of different distributions of known classes in a weighted way.Experiments conducted on IRIS data and radar emitter signals show that the proposed method can balance local distributions of samples and obtain the best global clustering.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2010年第6期1215-1219,共5页
Systems Engineering and Electronics
基金
国家自然科学基金(60702026
60572143)
四川省青年科技基金(09ZQ026-040)资助课题
关键词
信号处理
雷达辐射源信号识别
支持向量聚类
K-近邻法
signal processing
radar emitter signal recognition
support vector clustering
K-nearest neighbor