期刊文献+

基于加权K-近邻法和SVC的雷达辐射源信号识别 被引量:5

Radar emitter signal recognition based on weighted K-nearest neighbor and SVC
下载PDF
导出
摘要 为提高支持向量聚类法对分布复杂、不均匀雷达辐射源信号样本聚类的正确率,提出一种结合剪辑近邻法、K-近邻法和支持向量聚类的无监督分类新方法。先采用支持向量聚类对所有未知样本作预分类,再按照一定的剪辑规则剪掉错误类别,最后利用K-近邻法对剪掉的样本按各已知类别不同分布进行加权分类。IRIS数据和辐射源信号聚类实验结果表明,此方法能平衡数据样本各局部分布,获得全局最优聚类分配。 To enhance the correct rate that support vector clustering(SVC) processes radar emitter signal samples with complex and uneven distributions,a novel unsupervised clustering method combining editing nearest-neighbor,K-nearest neighbor with SVC is presented.SVC is first employed to cluster unknown samples.Then wrong clusters are edited by using editing rules.Finally a K-nearest neighbor is introduced to classify the edited samples in terms of different distributions of known classes in a weighted way.Experiments conducted on IRIS data and radar emitter signals show that the proposed method can balance local distributions of samples and obtain the best global clustering.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第6期1215-1219,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60702026 60572143) 四川省青年科技基金(09ZQ026-040)资助课题
关键词 信号处理 雷达辐射源信号识别 支持向量聚类 K-近邻法 signal processing radar emitter signal recognition support vector clustering K-nearest neighbor
  • 相关文献

参考文献10

二级参考文献23

  • 1张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 2张葛祥,金炜东,胡来招.基于相像系数的雷达辐射源信号特征选择[J].信号处理,2005,21(6):663-667. 被引量:23
  • 3边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 4Bressan M, Vitria J. On the selection and classification of independent features [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1312-1317.
  • 5Zhang G E Neural networks for classification: a survey[J].IEEE Trans. on System, Man, and Cybernetics-Part C:Application and Reviews. 2000, 30(4): 451-462.
  • 6Kavalov D, Kalinin V. Neural network surface acoustic wave RF signal processor for digital modulation recognition[J]. IEEE Trans. on Ultrasonics, Ferroelectrics,and Frequency Control, 2002, 49(9): 1280-1290.
  • 7Riedmiller M., Braun H. A direct adaptive method for faster back propagation learning: The RPROP algorithm[A]. Proc. of IEEE Int. Conf. on Neural Networks[C].1993, 586-591.
  • 8Zhao J, Wang G Y, Wu Z E et al. The study on technologies for feature selection[A]. Proc. of 1st Int.Conf. on Machine Learning and Cybernetics [C]. 2002,689-693.
  • 9Molina L C, Belanche L, Nebot A. Feature selection algorithms: a survey and experimental evaluation [A].Proc. of Int. Conf. on Data Mining [C]. 2002, 306-313.
  • 10Guo G D, Dyer C R. Simultaneous selection and classifier training via linear programming: a case study for face expression recognition [A]. Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition [C]. 2003, 346-352.

共引文献91

同被引文献38

  • 1张葛祥,胡来招,金炜东.基于熵特征的雷达辐射源信号识别[J].电波科学学报,2005,20(4):440-445. 被引量:60
  • 2张金泽,单甘霖.改进的SVM算法及其在故障诊断中的应用研究[J].电光与控制,2006,13(6):97-100. 被引量:8
  • 3严蔚敏 吴伟民.数据结构[M].北京:清华大学出版社,1994..
  • 4林相平.雷达对抗原理[M].西安:西北电讯工程学院出版社,1985.
  • 5罗景青.雷达对抗原理[M].北京:解放军出版社,2003.
  • 6Maier N W. Processing Throughput Estimation for Radar Intercept Receivers [J]. IEEE Transactions on Aerospace and Electronic System, 1998,34 (1) : 84-92.
  • 7Quan W,Li P,Xu F K. An Algorithm of Sorting the Phased Array Radar Signal Based on RST [C]//IEEE International Conference On Compute Design And Appliations (ICCDA 2010), 2010, 4: 429-432.
  • 8Quan W, Li P, Wu D, et al. A New Sorting Algorithm for Radar Emitter Recognition[J]. IEEE International Conference on Computer, Mechatronics, Control and Electronic Engineering(CMCE),2010:407-410.
  • 9周东青,王洪迅,王星,等.对分频段RWR/ESM脉冲重叠概率的分析[J].电讯技术,2012,52(4):529-534.
  • 10边肇祺.模式识别[M]北京:清华大学出版社,2007.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部