期刊文献+

土壤铅含量高光谱遥感反演中波段选择方法研究 被引量:22

A Study of Band Selection Method for Retrieving Soil Lead Content with Hyperspectral Remote Sensing Data
原文传递
导出
摘要 利用高光谱遥感数据进行了南京郊外土壤重金属元素铅的含量反演,由于高光谱数据波段众多,波段选择或变换至关重要。比较了基于次贪婪的前向选择模型的最小角度拟合和基于遗传算法进行波段选择的最小二乘和偏最小二乘拟合,结果发现基于遗传算法的偏最小二乘反演结果优于全波段的偏最小二乘,表明波段选择在高光谱反演重金属中是有益的。尽管采取了波段选择后的各方法在反演时均能达到70%以上的训练精度,但因遗传算法搜索的解空间范围更宽广,使得基于遗传算法的偏最小二乘优于前向选择模型的最小角度拟合。最后还比较了基于遗传算法的普通最小二乘和偏最小二乘拟合,结果表明偏最小二乘更优,因此在高光谱反演重金属含量当中,偏最小二乘精度较高,而在波段选择方法中,遗传算法更优。 To retrieve the lead content in the soil from hyperspectral remote sensing data,we should select bands or do some transformation first.In this paper,we compared Least Angle Regression,which is a modest forward choose method,and least squares regression and partial least squares regression based on genetic algorithm.As a validation result of the test area in Jianning,Nanjing,regression results with band selection are better than those without.Although Least Angle Regression,partial least squares regression with genetic algorithm can reach 70% training correctness,the latter based on genetic algorithm is better,because it can reach a larger solution space.At last,we conclude that partial least squares regression is a good choice for the lead content retrieval in soil by hyperspectral remote sensing data,and genetic algorithm can improve the retrieval by band selection promisingly.
出处 《地球科学进展》 CAS CSCD 北大核心 2010年第6期625-629,共5页 Advances in Earth Science
基金 国防科工委民用航天空间应用项目"新一代环境监测高光谱卫星指标论证" 国家科技支撑计划项目"环北京区域多源空间数据处理技术研究"(编号:2007BAH15B01)资助
关键词 重金属遥感反演 偏最小二乘 最小角度拟合 遗传算法 波段选择 Heavy metal inversion Partial least squares regression Least angle regression Genetic algorithm Band selection.
  • 相关文献

参考文献9

  • 1Kooistra L, Wehrens R, Leuven R S E W, et al. Possibilities of visible near infrared spectroscopy for the assessment of soil contamination in river floodplains [ J ]. Analytica Chimica Acta, 2001,446 (1/2) : 97-105.
  • 2迟光宇,刘新会,刘素红,杨志峰.环境污染监测中的植物光谱效应研究[J].环境科学与技术,2005,28(B06):16-19. 被引量:29
  • 3Wu Y, Chen J, Wu X, et al. Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils [ J]. Applied Geochemistry,2005, (20) : 1 051-1 059.
  • 4Efron B, Hastie T, Johnstone I, et al. Least angle regression [ J ]. The Annals of Statistics, 2004, 32 ( 2 ) : 407-451.
  • 5Kooistra L, Wanders J, Epema G F, et al. The potential of field spectroscopy for the assessment of sediment properties in river floodplains [ J ]. Analytica Chimica Acta,2003,484 ( 2 ) : 189-200.
  • 6Reeves J B, Mccarty G W, Mimmo T. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils [ J ]. Environmental Pollutution,2002, ( 116 ) : 277-284.
  • 7Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning[ M ]. New York : Addison-Wesley, 1989.
  • 8Holland J H. Adaption in Natural and Artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge, MA: MIT Press, 1992.
  • 9Broadhurst D, Goodacre R, Jones A, et al. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry [ J ]. Analytica Chimica Acta, 1997, 8 (34) : 71-86.

二级参考文献23

  • 1蒋明义,杨文英,徐江,陈巧云.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].Acta Botanica Sinica,1994,36(4):289-295. 被引量:194
  • 2孙赛初 王焕校 等.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121.
  • 3Dune CE. The biogeochemical survey gold in Canada [C]. In: Proceeding of 15th International Geochemical Exploration Society. Prague: 1990. 245.
  • 4James E, Vogelmann, Rock B N. Assessing forest damage in hing-elevation coniferous forests in Vermont and new hampshire using thematic mapping data[J]. Remote Sensing of Environment, 1988,24 : 227-246.
  • 5Rai L C, Gaur J P, Kumar H D. Phycology and heavy metal pollution[J]. Biol. Rev., 1981,56: 99-151.
  • 6Martin J H, Coale K H, Johnson K S. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean [J]. Nature, 1994,371(6493): 123-129.
  • 7Horler D H N, Dockray M, Barber J. The Red Edge ofPlant Leaf Reflectance[J]. International Journal of Remote Sensing, 1983,4: 273-288.
  • 8Rock B N, Hoshizaki T, Miller J R. Comparison of in Situ and Airborne Spectral Measurements of the Blue Shift Associated with Forest Decline[J]. Remote Sensing of Environment, 1988,24 : 109-127.
  • 9Jago A R, Cutler M E J, Curran P J. Estimating canopy chlorophyll concentration from field and airbornespectra [J]. Remote Sensing of Environment, 1999, (68): 217-224.
  • 10Danidl A Sims, John A Gamon. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002,(81) :337-354.

共引文献28

同被引文献434

引证文献22

二级引证文献304

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部