期刊文献+

大肠杆菌分解代谢产物阻遏效应研究进展 被引量:9

Advances in mechanism of Escherichia coli carbon catabolite repression
下载PDF
导出
摘要 细菌在多种碳源共存的环境中优先利用一种(通常是葡萄糖)的现象被称为分解代谢产物阻遏效应。国内现有分子生物学及相关课程教材普遍对该效应的机理解释不清甚至给出错误的解释。大肠杆菌葡萄糖-乳糖分解代谢产物阻遏效应产生的根本原因不是胞内葡萄糖的存在,而是葡萄糖经PTS(Phosphoenolpyruvate:carbohydratephosphotransferase system)系统向胞内运输同时藕联磷酸化的过程。磷酸向葡萄糖的传递导致PTS关键组分EⅡAGlc去磷酸化形式的积累。该形式的EⅡAGlc可以与质膜上本底表达的乳糖透性酶LacY结合,阻止诱导物乳糖的吸收。cAMP的影响也是通过激活参与PTS系统的关键基因而加强了诱导物排斥作用。此外,去磷酸化形式的EⅡBGlc和YeeⅠ对全局性转录阻遏蛋白Mlc活性的抑制也保证了PTS系统关键组分蛋白的基因表达。文章综述了近年来有关大肠杆菌分解代谢产物阻遏效应机理的最新研究进展,并对相关教材有关这一内容的阐述提出了修改建议。 Bacteria often sequentially utilize coexisting carbohydrates in environment and firstly select the one (frequently glucose) easiest to metabolize. This phenomenon is known as carbon catabolite repression (CCR). In existing Chinese teaching materials of molecular biology and related courses, unclear or even wrong interpretations are given about CCR mechanism. A large number of studies have shown that rather than the existence of intracellular glucose, CCR is mainly caused by the glucose transport process coupling with glucose phosphorylation via the phosphoenolpyruvate: car bohydrate phosphotransferase system PTS. The transport process leads to accumulation of dephosphorylated form of E Ⅱ AGlc.This form of E Ⅱ AGlc can bind the membrane-localized LacY protein to block the uptake of lactose inducer. cAMP functions in activation of key genes involved in PTS system to strengthen the role of inducer exclusion. In addition, dephosphorylated form of E Ⅱ BGlc and YeeⅠ bind global transcription repressor Mlc to ensure the expression of key genes involved in the PTS system. This review summarizes the current advancement in mechanism of Escherichia coli carbon catabolite repression.
出处 《遗传》 CAS CSCD 北大核心 2010年第6期571-576,共6页 Hereditas(Beijing)
基金 天津市自然科学基金项目(编号:08JCYBJC05000) 天津市高等学校科技发展基金项目(编号:20070916)资助
关键词 乳糖操纵子 分解代谢产物阻遏 磷酸烯醇式丙酮酸:糖类磷酸转移酶系统 lactose operon carbon catabolite repression phosphoenolpyruvate:carbohydrate phosphotrans-ferase system
  • 相关文献

参考文献30

  • 1Monod J.Recherches Sur la Croissance des Cultures Bactériennes.2nd ed.Hermann et Cie,Paris,1942.
  • 2Magasanik B.Catabolite repression.Cold Spring Harbor Symp Quant Biol,1961,26:249-256.
  • 3Deutscher J.The mechanisms of carbon catabolite repression in bacteria.Curr Opin Microbiol,2008,11(2):87-93.
  • 4Wanner BL,Kodeira R,Neidhardt FC.Regulation of lac operon expression:reappraisal of the theory of catabolite repression.J Bacteriol,1978,136(3):947-954.
  • 5Gorke B,Stulke J.Carbon catabolite repression in bacteria:many ways to make the most out of nutrients.Nat Rev Microbiol,2008,6(8):613-624.
  • 6Postma PW,Lengeler JW,Jacobson GR.Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.Microbiol Rev,1993,57(3):543-594.
  • 7Kundig W,Ghosh S,Roseman S.Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system.Proc Natl Acad Sci USA,1964,52(4):1067-1074.
  • 8Robillard GT,Dooijewaard G,Lolkema J.Escherichia coli phosphoenolpyruvate dependent phosphotransferase system.Complete purification of Enzyme I by hydrophobic interaction chromatography.Biochemistry,1979,18(14):2984-2989.
  • 9Anderson B,Weigel N,Kundig W,Roseman S.Sugar transport.III.Purification and properties of a phosphor-carrier protein of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli.J Biol Chem,1971,246(22):7023-7033.
  • 10Saffen DW,Presper KA,Doering TL,Roseman S.Sugar transport by the bacterial phosphotransferase system.Molecular cloning and structural analysis of the Escherichia coli ptsH,ptsI,and crr genes.J Biol Chem,1987,262:16241-16253.

同被引文献89

  • 1ZHAO Yue WU Bin YAN Baixu GAO Peiji.Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase[J].Science China(Life Sciences),2004,47(1):18-24. 被引量:5
  • 2张倩,廖玉才,陈方方,董璇,李和平.大肠杆菌6-磷酸甘露糖异构酶基因的克隆与表达[J].华中农业大学学报,2006,25(5):461-464. 被引量:3
  • 3周璟,盛红梅,安黎哲.极端微生物的多样性及应用[J].冰川冻土,2007,29(2):286-291. 被引量:11
  • 4Khoushab F,Yamabhai M.Chitin research revisited.Mar Drugs,2010,8(7): 1988-2012.
  • 5Zhao Y,Park RD,Muzzarelli RAA.Chitin deacetylases: properties and applications.Mar Drugs,2010,8(1): 24-46.
  • 6Maillet F,Poinsot V,André O,Puech-Pagès V,Haouy A,Gueunier M,Cromer L,Giraudet D,Formey D,Niebel A,Martinez EA,Driguez H,Bécard G,Dénarié J.Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza.Nature,2011,469(7328): 58-63.
  • 7Felse PA,Panda T.Regulation and cloning of microbial chitinase genes.Appl Microbiol Biotechnol,1999,51(2): 141-151.
  • 8Miyashita K,Fujii T,Saito A.Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources.Biosci Biotechnol Biochem,2000,64(1): 39-43.
  • 9Saito A,Fujii T,Shinya T,Shibuya N,Ando A,Miyashita K.The msiK gene,encoding the ATP-hydrolysing component of N,N'-diacetylchitobiose ABC transporters,is essential for induction of chitinase production in Streptomyces coelicolor A3(2).Microbiol-Sgm,2008,154(Pt 11): 3358-3365.
  • 10Hirano T,Kadokura K,Ikegami T,Shigeta Y,Kumaki Y,Hakamata W,Oku T,Nishio T.Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes.Glycobiology,2009,19(9): 1046-1053.

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部