期刊文献+

基于Matlab的高光谱遥感数据降维并行计算分析 被引量:6

Parallel Computation in Dimension Reduction of Hyperspectral Remote Sensing Imagery Based on Matlab
下载PDF
导出
摘要 对于海量遥感数据的计算而言,串行运算对计算机性能要求高,而且耗时长。为此本文提出引用并行运算方法,不仅可以降低对计算机性能的要求,还可以大大提高运行和计算速度。为此,首先介绍了基于MPI(Message Passing Interface)的并行运算机制,且以Matlab为例给出了它的并行模式,并详细介绍了将现有串行运算代码改造成并行运算的流程。以海量高光谱影像数据为例,将本征维数估计的串行运算修改为并行运算,实验分析并测试了其运行效率。结果表明,并行计算较串行计算可大大缩短本征维数的计算时间。 Serial computation usually requires computer of high-performance and time-consuming when calculation of huge amount of remote sensing data.So the parallel computation is involved in to avoid the strict request of computer capacity,and help to improve the speed of calculation significantly.The mechanism of parallel computation based on MPI(Message Passing Interface) is introduced and performed a model in MATLAB as well.The detail flowchart of the way how to change the serial computation code into the parallel one is then presented.As a case study,the code of intrinsic dimension estimation of large volume hyperspectral remote sensing data was changed from serial computation mode into parallel computation.Finally,numerical results show that parallel computation has clearly advantage in efficiency when perform the complicated computation.
出处 《遥感信息》 CSCD 2010年第3期13-17,共5页 Remote Sensing Information
基金 国家自然科学基金项目(40501061) 海岛(礁)测绘技术国家测绘局重点实验室资助项目(2009B10)
关键词 并行计算 MATLAB 高光谱遥感 本征维数 parallel computation MATLAB hyperspectral remote sensing intrinsic dimension
  • 相关文献

参考文献12

  • 1[美]C.Xavier,S.S.Iyengar著,张云泉,陈英译.并行算法导论[M].北京:机械工业出版社,2004.
  • 2张良培育,张立福.高光谱遥感[M].武汉:武汉大学出版社,2005.
  • 3浦瑞良 宫鹏.高光谱遥感及应用[M].北京:高等教育出版社,2000.10-18.
  • 4Huang Qihong, Chen Hu, Liu Zhao. Texture classification using spectral histogram representations and SVMs[A]. ICCCAS' [C]. 2006 : 226-229.
  • 5Levina E, Bickel P. Maximum likelihood estimation of intrinsic dimension[J]. Advances in Neural Information Processing Systems, 2005 (15) : 777- 784.
  • 6Franeesco C. Estimating the intrinsic dimension of data with a fractal-based method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002.
  • 7Costa J, Hero AO. Geodesic entropic graphs for dimensiona and entropy estimation in manifold learing[J]. IEEE Transactions on Signal Processing, 2004,52 (8) : 2210- 2221.
  • 8Ron Choy,A lan Edelman. Parallel MATLAB:Doing it Right[A]. Proceedings of the IEEE[C]. 2005,93(2) :331-341.
  • 9Dongarra J. Introduction to MPI[J]. The International Journal of Supercomputer Applications, 1994(8) :169-174.
  • 10Message Passing Interface Forum MPI: A Message-Pasing Interface Standard[EB/OL]. http://www. mpi-forum. org/ docs/mpi-11-html/mpi-report. html, 1995.

共引文献15

同被引文献96

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部