期刊文献+

制备工艺对n型Bi_2Te_3基材料热电性能和抗压强度的影响 被引量:5

Effects of Preparation Techniques on the Thermoelectric Properties and Pressive Strengths of n-type Bi_2Te_3 Based Materials
下载PDF
导出
摘要 以商用区熔(ZM)n型Bi2Te3基材料为原料,采用简单研磨结合放电等离子烧结技术(ZM+SPS)和熔体旋甩(MS)结合放电等离子烧结技术(MS+SPS)制备了n型Bi2Te3基块体热电材料.对三种不同工艺制备出样品的微结构、热电性能和力学性能进行了研究.FESEM微结构表征结果表明:区熔样品的晶粒粗大,有较强的取向性;经SPS烧结后,晶粒细化,取向性大为降低;而区熔样品经MS+SPS后,晶粒得到进一步细化,且没有明显的取向性.对三组样品进行的热电性能和抗压强度测试,结果表明:区熔原料最大ZT值为0.72(430K),抗压强度仅为40MPa;经SPS后,样品的最大ZT值为0.68(440K),抗压强度为110MPa,相比区熔样品提高了175%;MS+SPS样品的最大ZT值为0.96(320K),其室温ZT值相比区熔样品提高了64%,抗压强度相比区熔样品提高了400%,达到200MPa. The zone-melted n-type Bi2Te3 ingots were chosen as the starting material to prepare the bulk samples by two different synthesis routes including hand grinding combined with spark plasma sintering process(ZM+SPS) and melt spinning(MS) technique combined with a subsequent spark plasma sintering process(MS+SPS).The microstructures,thermoelectric properties and mechanical properties of three samples prepared by different techniques were studied.The ZM samples show rough grain size and strong grain orientations.After hand grinded and SPS process,the crystalline grains are refined and grain orientations are remarkably decreased.While the MS+SPS samples with fine grains have no distinct grain orientations.The results of thermoelectric properties and pressive strength measurement show that the maximum figure of merit ZT value reaches 0.72 at 430 K for ZM starting materials and the pressive strength is only about 40MPa.The maximum figure of merit ZT value decreases to 0.68 at 440 K for the ZM+SPS samples but the pressive strength are increased to 110MPa,which is about 175% improvement compared with ZM samples.The maximum figure of merit ZT value and pressive strength are 0.96 at 320 K and 200MPa respectively for the MS+SPS samples,the room temperature ZT and pressive strength are about 64% and 400% improvement compared with ZM samples.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2010年第6期609-614,共6页 Journal of Inorganic Materials
基金 国家973计划项目(2007CB607501)
关键词 碲化铋 制备工艺 热电性能 抗压强度 bismuth tellurium preparation technique thermoelectric property pressive strength
  • 相关文献

参考文献15

  • 1Rowe D M.CRC Handbook of Thermoelectrics.Nashua USA,1995,27: 1-18.
  • 2Yu Fengrong,Zhang Jianjun,Yu Dongli,et al.Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk.J.Appl..Phys.,2009,105(9): 094303-1-5.
  • 3Seizo Nakajima.The crystal structure of Bi2Te3-xSex.J.Phys.Chem.Solids,1963,24(3): 479-485.
  • 4Greenaway D L,Harbeke G..Band structure of bismuth telluride,bismuth selenide and their respective alloys.J.Phys.Chem.Solids,1965,26(10): 1585-1604.
  • 5Ma Yi,Hao Qing,Poudel Bed,et al.Enhanced thermoelectric figure-of-merit in p-type nanostructures bismuth antimony tellurium alloys made from elemental chunks.Nano Lett.,2008,8(8): 2580-2584.
  • 6Poudel B,Hao Q,Ma Y,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.Science,2008,320(5876): 634-638.
  • 7Lan Yucheng,Poudel Bed,Ma Yi,et al.Structure study of bulk nanograined thermoelectric bismuth antimony telluride.Nano Lett.,2009,9(4): 1419-1422.
  • 8Tang X F,Xie W J,Li H,et al.Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure.Appl.Phys.Lett.,2007,90(1): 012102- 1-3.
  • 9Xie W J,Tang X F,Yan Y G,et al.Unique nanostructure and thermoelectric performance of melt-spun BiSeTe alloys.Appl.Phys.Lett.,2009,94(10): 102111-1-3.
  • 10Xie Wenjie,Tang Xinfeng,Yan Yonggao,et al.High thermoelectric performance BiSbTe alloy with unique low-dimentional structure.J.Appl.Phys.,2009,105(11): 113713-1-8.

共引文献4

同被引文献73

  • 1何龙庆,林继成,石冰.菲克定律与扩散的热力学理论[J].安庆师范学院学报(自然科学版),2006,12(4):38-39. 被引量:38
  • 2JEFFREY S G TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7:105-114.
  • 3DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285: 703-706.
  • 4CAO Yi-qi, ZHAO Xin-bing, ZHU Tie-jun, TU Jiang-ping. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure[J]. Applied Physics Letters, 2008, 92(143106): 1-3.
  • 5NI Hua-liang, ZHAO Xin-bing, ZHU Tie-jun, JI Xiao-hua, TU .liang-ping. Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites[J]. Journal of Alloys and Compounds, 2005, 397: 317-321.
  • 6TRITT T M. Thermoelectric materials-holey and unholey semiconductors[J]. Science, 1999, 283: 804-805.
  • 7LARSON P, MAHANTI S D, KANATZIDIS M G. Electronic structure and transport of Bi2Ye3 and BaBiTe3[J]. Physical Review D, 2000, 61: 8162-8171.
  • 8POUDEL B, HAO Qing, MA Yi, LAN Yu-cheng, M1NNICH A, YU Bo, YAN Xiao, WANG De-zhi, MUTO A, VASHAEE D, CHEN Xiao-yuan, LIU Jun-ming, DRESSELHAUS M S, CHEN Gang, REN Zhi-feng, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320: 634-638.
  • 9TANG Xin-feng, XIE Wen-jie, HAN Li, ZHAO Wen-yu, ZHANG Qing-jie. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure[J]. Applied Physics Letters, 2007, 90(012102): 1-3.
  • 10ZHU Tie-jun, YAN Feng, ZHAO Xin-bing, ZHANG Sheng-nan, CHEN Yi, YANG Sheng-hui. Preparation and thermoelectric properties of bulk in situ nanocomposites with amorphous/ nanocrystal hybrid structure[J]. Journal of Physics D: Applied Physics, 2007, 40: 6094-6097.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部