期刊文献+

基于矩阵加权关联规则的核模糊聚类

Fuzzy Core Clustering Based on Matrix of Weighted Asociation Rules
下载PDF
导出
摘要 提出一种基于矩阵加权关联规则的空间粒度聚类算法。该算法核心思想是根据文档特征向量矩阵提取文档的相似度,再在该关联规则算法上进行聚类来寻找相似关系的频繁项集。通过引入核函数,样本点被非线性变换映射到高维特征空间进行聚类,提高聚类性能。通过矩阵加权关联规则算法进行聚类。通过实验表明,在处理中小型文档时,该算法的精确度优于传统Apriori算法和K-mean算法;在处理大型文档时,该算法的时间复杂度小于传统的K-mean算法。 This paper presents a spatial granularity clustering algorithm based on matrix of weighted association rules.The core idea of the algorithm is based on the document feature vectors matrix extracted document similarity,then by the association rules algorithms for clustering to find similar relations between the frequent itemsets.By introducing the kernel function,the sample points mapped by non-linear transformation into high-dimensional feature space for clustering,and clustering performance been improved.Matrix of weighted association rules by clustering algorithms.Experiments show that,in dealing with small and medium sized document,the accuracy of the algorithm is superior to the traditional Apriori algorithm and K-mean algorithm;in dealing with large documents,the algorithm's time complexity is less than the traditional K-mean algorithm.
出处 《计算技术与自动化》 2010年第2期59-62,共4页 Computing Technology and Automation
基金 湖南教育厅科学研究基金项目(08C248) 湖南教育厅科学研究基金项目(09C297)
关键词 关联规则 粒度 聚类算法 频繁项集 association rules granularity cluster algorithm frequent items
  • 相关文献

参考文献10

  • 1黄名选,严小卫,张师超.查询扩展技术进展与展望[J].计算机应用与软件,2007,24(11):1-4. 被引量:53
  • 2KURAMOCHI M. Karypis G Frequent Subgraph Discovery//Pro-caedings of the 2001 IEEE International Conference on Data Mining[J]. San Jose,California,USA,2001:313-320.
  • 3BEBEL B, KROLIKOWSLD Z, WREMBL R. Formal Approach to Modeling a Multiversion Data Warehouse[J]. Bulletin of the Polish Academy of Sciences,2006,54(1) :51-62.
  • 4AGRAWAL R, IMIELINSKI T, SWAMI A. Mining Association Rules between Sets of Items in Large Database[C]//Proceedings of the ACM SIGM OD Conference on Management of Data. Washington,USA: ACM Press, 1993.
  • 5MEIDLDI W,NIEDERREITER H. Counting functions and expected values for the k-error linear complexity[J]. Finite Fields Appl, 2002,8: 142 - 154.
  • 6MEIDLDI W, NIEDERREITER H. Linear complexity k--error linear complexity, and the discrete fourier transform[J]. Complexity, 2002,18:87- 103.
  • 7MULLER K,MIKA S, RATSCH G. An Introduction to Kernel- based Learning Algorithms[J]. IEEE Trans. on Neural Networks, 2001,12(2) : 181-201.
  • 8王伦文.聚类的粒度分析[J].计算机工程与应用,2006,42(5):29-31. 被引量:19
  • 9卜东波,白硕,李国杰.聚类/分类中的粒度原理[J].计算机学报,2002,25(8):810-816. 被引量:95
  • 10李杰,徐勇,朱昭贤,王云峰.模糊C均值算法参数仿真研究[J].系统仿真学报,2008,20(2):509-513. 被引量:19

二级参考文献80

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部