摘要
构建多元线性和半参数单指数自回归条件持续时间标值模型及其估计方法,基于分笔交易数据研究中国股票市场交易与信息之间的线性与非线性动态关系。实证结果表明:(1) 交易持续时间存在明显正自相关性、过度分散性和聚集效应;(2) 滞后收益率、成交量、买卖价差对交易持续时间有显著线性正影响,滞后波动率对交易持续时间有显著线性负影响,各滞后市场微观结构特征变量对交易持续时间的影响普遍支持Easley和O'Hara (1992)“无交易预示着无消息"的发现;(3) 滞后收益率、波动率、成交量和买卖价差对交易持续时间的非线性正、负影响有差异,各滞后市场微观结构特征变量对交易持续时间的影响没有一致性的结论,Diamond和Verrechia(1987)的“无交易预示着坏消息"以及Easley和O'Hara(1992)的“无交易预示着无消息"的结论同时成立。
By constructing multivariate linear and semi - parametric single - index Autoregressive Conditional Duration marked model and its estimation methods, this article studies the linear and nonlinear dynamic rela- tionship between trading and information in China stock market. Evidence from the empirical analysis con- firms: (1) there are clustering effect, over-dispersed property and positive autocorrelation for transaction duration; (2) the lagged return, volume, and bid- ask spread have linear significant positive effects on transaction duration, whereas the lagged volatility has a linear significant negative effect on transaction dura- tion, which is generally supported the findings of Easley and O' Hara ( 1992 ) ; (3) the lagged return, vol- ume, bid- ask spread, and volatility has different nonlinear effect on transaction duration. The findings of Diamond and Verrechia (1987) and Easley and O' Hara (1992) are proved at the same time.
出处
《财经科学》
CSSCI
北大核心
2010年第7期24-32,共9页
Finance & Economics
基金
2009年教育部人文社会科学研究青年基金项目《新兴订单驱动市场金融持续时间的统计分析及其应用》(项目批准号:09YJC910009)
西南财经大学“211工程”三期青年教师成长项目(211QN09020),西南财经大学“211工程三期”统计学重点学科建设项目的资助