期刊文献+

线性模型下基于AIC准则的Bayes变量选择 被引量:3

Bayesian variable selection based on AIC criteria in linear models
原文传递
导出
摘要 讨论了线性模型下Bayes变量选择问题。通过用AIC准则来修正经典的Bayes变量选择方法,构造修正后的子模型后验分布,并且通过仿真计算验证,修正后的后验分布可以提高变量选择精度。 The problem of Bayesian variable selection in linear models is studied.Different from the classical method of Bayesian variable selection,AIC criteria is used to construct the posterior distribution of the subset model.Simulation studies are also provided to demonstrate the better performance of the proposed method.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第6期43-45,共3页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10671110) 国家重点基础研究发展规划项目计划(973计划)(2007CB814900)
关键词 Bayes变量选择 AIC准则 后验分布 Bayesian variable selection AIC criteria Posterior distribution
  • 相关文献

参考文献5

  • 1LEE K E, SHA N, DOUGHERTY E R, et al. Gene selection: a Bayesian variable selection approach [J ]. Bioinformatics, 2003,19:90-97.
  • 2ZHOU X, LIU K Y, WONG S T C. Cancer classification and prediction using logistic regression with Bayesian gene selection [J]. Journal of Biomedical Informatics, 2004, 37:249-259.
  • 3SHA N, VANNUCCI M, TADESSE M G, et al. Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage[J]. Biometrics, 2004, 60:812-819.
  • 4SMITH M, KOHN R. Nonparametric regression using Bayesian variable selection[J]. J Econometrics, 1996, 75:317-343.
  • 5JIANG W. On the consistency of Bayesian variable selection for high dimensional binary regression and classification[J]. Neural Computation, 2006, 18:2762-2776.

同被引文献37

  • 1严文峰,李晓东,高智花,刘武,梁婕,李镇镇,曾光明.污泥厌氧消化的人工神经网络模型[J].环境工程学报,2015,9(5):2425-2429. 被引量:2
  • 2周婉枝.多元C_p统计量[J].广西大学学报(自然科学版),1995,20(3):291-294. 被引量:1
  • 3张崇岐,赵娜.最优混料试验轴设计[J].工程数学学报,2007,24(3):463-468. 被引量:4
  • 4刘璋温 吴国富.选择回归模型的几个准则.数学的实践与认识,1983,1(3):63-71.
  • 5何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2011.
  • 6Allen D. Mean Square Error of Prediction as a Criterion for Selecting Variables[J].Technometrics,1971,3(13).
  • 7Nan Y, Yang Y H. Variable Selection Diagnostics Measures for High- Dimensional Regression[J].Joumal of Computational and Graphical Statistics,2014,3(23).
  • 8Mallows C L.Some Comments on Cp [J].Technometrics,1964,15(4):661-675.
  • 9Akaike H.Information theory and an extension of the maximum likelihood principle [A].In:Petrov B N,Csaki F (eds).Proceedings of the Second International Symposium on Information Theory [C].Budapest,1973:267-281.
  • 10Schwarz G.Estimating the dimension of a model [J].Annals of Statistics,1978,6:461-464.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部