摘要
对五阶色散方程给出了一组非对称的差分公式,用这些差分公式构造了一种适合于并行计算的交替分组方法,证明了格式的稳定性。数值试验表明,这种方法在空间方向具有接近二阶的精度。
A group of asymmetric difference schemes to approximate the fifth-order dispersive equation are given.Using the schemes,the alternating group method for solving the fifth-order dispersive equation is constructed.The scheme is unconditionally stable,and is directly used on the parallel computer.Numerical experiments show the method has near the second order ratio of convergence in space.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2010年第6期46-49,共4页
Journal of Shandong University(Natural Science)
基金
山东省自然科学基金资助项目(Y2006A07)
关键词
五阶色散方程
并行计算
交替分组方法
绝对稳定
fifth-order dispersive equation
parallel computation
alternating group method
unconditionally stable