期刊文献+

一类二阶非线性中立型微分方程非振动解的渐近性质

Asymptotic Behavior for Non-oscillatory Solutions of Second Order Neutral Nonlinear Differential Equation
下载PDF
导出
摘要 利用Bellman-B ihari积分不等式,讨论了二阶非线性中立型微分方程,(x(t)+px(t-τ))″=f(t,x(t),x(′t)),t≥1,τ>0(f∈C[[1,∞)×R×R,R])解的渐近质,得到了方程解渐近于直线的一个充分条件. This paper discusses the asymptotic behavior of non-oscillatory solutions of second order neutral nonlinear differential equationusing the Bellman-Bihari inequality.A sufficient condition for the asymptotic behavior of non-oscillatory solutions of equation is obtained.
出处 《惠州学院学报》 2010年第3期26-29,共4页 Journal of Huizhou University
关键词 非线性中立型微分方程 渐近性 Bellman-Bihari积分不等式 neutral nonlinear differential equation asymptotic behavior Bellman-Bihari inequality
  • 相关文献

参考文献7

  • 1DZURINA J. Asymptotic behaviour of solutions neutral nonlinear differential equation[ J ]. Archivum Mathematicum. 2002 (38) : 319 - 325.
  • 2ROGOVCHENKO S P, ROGOVCHENKO Y V. Asymptotic behaviour of the solutions of second order nonlinear differential equations[J]. Portugal Math,2000(57) :17 -33.
  • 3LIPOVAN O. On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations [ J ]. J Glasgow Math ,2003 ( 45 ) : 179 - 187.
  • 4MUSTAFA O G, ROGOVCHENKO Y V. Global exisitence of solutions with prescribed asymptotic Behavior for second - order non- linear differential equations [ J ]. Nonlinear Analysis,2002 ( 51 ) : 339 - 368.
  • 5DNANAN F M. Integral inequalities of Gronwall- Bellman - Bihari type and asymptotic behaviour of certain second order[ J ]. Math Anal Appl, 1990(108) :383 - 386.
  • 6MUSTAFA O G, ROGOVCHENKO Y V. Asymptotic integration of a class of nonlinear differential equations[ J]. Appl Math Lett, 2006,19:849 - 853.
  • 7AGARWAL R P, DJEDALI S, MOUSSAOUL T, MUSTAFA O G. On the asymptotic integration of nonlinear differential equations [ J ]. Comp Appl Math,2007 (202) :352 - 376.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部