期刊文献+

基于模板的态势估计推理模型与算法 被引量:11

Template-based Inference Model and Algorithm for Situation Assessment in Information Fusion
下载PDF
导出
摘要 分析了态势估计的三级模型,给出了基于模板的计划识别推理框架,研究了态势估计推理算法,并提出一个通用的态势估计模板匹配算法,最后运用专家系统工具CLIPS实现了事件/活动、军事计划的模板表示及推理,结果表明使用模板匹配的方法实现态势估计是有效可行的。 This paper first presents three-level situation assessment model including situation detection,situation understanding and situation forecast,then introduces template-based plan recognition framework,last a universal template matching algorithm is put forward after discussion of algorithms of situation assessment.Finally,CLIPS,a tool of expert system,is used to express events, activities and military plans template,which shows the efficiency and feasibility of making use of template matching in situation assessment.
出处 《火力与指挥控制》 CSCD 北大核心 2010年第6期64-66,共3页 Fire Control & Command Control
基金 国防预研基金(51421010103jb3201) 科研基金资助项目
关键词 数据融合 态势估计 计划识别 模板匹配 data fusion situation assessment plan recognition template matching
  • 相关文献

参考文献7

  • 1Ben-Bassat M. Knowledge Requirement and Management in Expert Decision Support Systems for (Military) Situation Assessment [J] IEEE Trans on SMC, 1982,12 (4) : 479-490.
  • 2Waltz E,Llinas J. Multisensor Data Fusion. Boston [M]. MA: Artech House, 1990.
  • 3Noble D F. Schema-Based Knowledge Elicitation for Planning and Situation Assessment Aids [J]. IEEE Trans on SMC,1989, 19(3): 473-482.
  • 4Azarewicz J, Fala G,Heithecher C. Template-Based Multi-Agent Plan Recognition for Tactical Situation Assessment[C]//In Proceedings of 5th Conference on AI Applications, 1993.
  • 5Miao A X,Zacharias G L,Kao S. A Computational Situation Assessment Model for Nuclear Power Plant Operations[J]. IEEE Trans on SMC-Part A; System and Human,1997, 27(6) : 728-742.
  • 6刘昌云,刘进忙,张金成.分布式防空C^3I系统的作战效能模型研究[J].火力与指挥控制,2003,28(4):27-29. 被引量:2
  • 7李订芳,章文,何炎祥.一种新的带模糊权的粗糙聚类算法[J].信息与控制,2006,35(1):120-125. 被引量:3

二级参考文献22

  • 1赵国旗.高炮防空武器系统部署与毁歼概率[J].火控雷达技术,1996,25(4):5-11. 被引量:1
  • 2Han I,Kamber M.Data Mining:Concepts and Techniques[M].Berlin:Morgan Kaufmann Publishers,2000.335 ~ 389.
  • 3Li L M,Liu X D.Application of fuzzy clustering to the analysis of real estate markets[J].Journal of Shenzhen University Science & Engineering,2003,20(3):75 ~79.
  • 4Jiang D X,Tang C,Zhang A D.Cluster analysis for gene expression data:a survey[J].IEEE Transactions on Knowledge and Data Engineering,2004,16 (11):1370 ~ 1386.
  • 5Huang C J,Wu C F,Wang C C.Image processing techniques for wafer defect cluster identification[J].IEEE Design & Test of Computers,2002,19(2):44 ~48.
  • 6Kanfman L,Rousseeuw P J.Finding Groups in Data:An Introduction to Cluster Analysis[M].New York:John Wiley &Sons,1990.
  • 7Ng R T,Han J W.Efficient and effective clustering method for spatial data mining[A].Proceedings of the 20th International Conference on Very Large Data Bases[C].San Mateo,CA,USA:Morgan Kaufmann Publishing Inc,1994.144~155.
  • 8Pawlak Z.Rough sets[J].International Journal of Computer &Information Sciences,1982,11:341~356.
  • 9Lingras P,Yao Y Y.Time complexity of rough clustering:GAs versus K-means[A].Proceedings of the Third International Conference of Rough Sets and Current Trends in Computing 2002[C].Berlin,Germany:Springer-Verlag,2002.263 ~ 270.
  • 10Lingras P,Yan R,West C.Comparison of conventional and rough K-means clustering[A].Proceedings of the 9th International Conference of Rough Sets,Fuzzy Sets,Data Mining,and Cranular Computing[C].Berlin,Germany:Springer-Verlag,2003.130 ~ 137.

共引文献3

同被引文献131

引证文献11

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部