期刊文献+

集成SVM的回归预测及其遥感应用

Regression Prediction Using SVM Ensemble and Its Remote Sensing Application
下载PDF
导出
摘要 为了提高单支持向量机(SVM)回归模型的泛化能力,引入遗传算法(GA)用以搜索SVM的"低偏差区域",给出了一种基于GA的SVM异构集成方法。用此方法对十个典型的数据集进行回归预测,并与单SVM回归结果和Bagging集成回归结果进行了比较,表明这种异构集成方法有较好的泛化能力。将这种方法应用于感兴趣的四个渭河陕西段水质参数的遥感反演,取得了更为精确的预测结果。实验表明,对小样本情况,基于GA的SVM异构集成方法能在付出合理时间花销的条件下,使单SVM的泛化能力得到有效提升。 To improve the generalization ability of a single SVM regression model,a heterogeneous ensemble approach of SVMs is proposed by employing GA to search low bias region.Ten representative data sets were regressed,comparing with the single SVM regression and Bagging regression,the heterogeneous ensemble approach has achieved stronger generalization ability.Applying this approach to regress four concerned water quality parameters of Wei River,more accurate results were obtained.The experiment show that,with rational time consuming,the GA-based heterogeneous ensemble of SVMs improves the generalization ability of the single SVM effectively when only a small data set is available.
出处 《计算机技术与发展》 2010年第7期52-55,共4页 Computer Technology and Development
基金 国家自然科学基金(40671133)
关键词 支持向量机 遗传算法 BAGGING算法 异构集成 水质参数 回归模型 SVM GA Bagging algorithm heterogeneous ensemble water quality parameters regression model
  • 相关文献

参考文献17

  • 1杨一鹏,王桥,王文杰,高士平.水质遥感监测技术研究进展[J].地理与地理信息科学,2004,20(6):6-12. 被引量:50
  • 2刘灿德,何报寅.水质遥感监测研究进展[J].世界科技研究与发展,2005,27(5):40-44. 被引量:27
  • 3Vapnik V N. Estimation of Dependendes Based on Empirical Data[M]. Berlin: Springer - Verlag, 1982.
  • 4张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 5Kim H,Pang S,Je H,et al. Constructing Support Vector Machine Ensemble[J]. Pattern Reception, 2003,36 (12) : 2757 - 2767.
  • 6Valentini G, Muselli M, Ruffino F. Bagged Ensembles of SVMs for Gene Expression Data Analysis[C]//IEEE International Joint Conference on Neural Networks. Portland: [ s. n. ] ,2003:1844- 1849.
  • 7Valentini G,Dierterich T. Bias - Variance Analysis of Support Vector Machine for the Development of SVM- Based Ensemble Methods[ J ]. Journal of Machine Learning Research, 2004 (5) :725 - 775.
  • 8Srnola A J, Scholkopf B. A tutorial on support vector regression[ J ]. Statistics and Computing,2004,14(3) : 199 - 222.
  • 9周兆永,汪西莉,曹艳龙.基于GA优选参数的SVM水质评价方法研究[J].计算机工程与应用,2008,44(4):190-193. 被引量:13
  • 10Dietterich T G. Machine learning research: four current directions[J]. AI Magazine, 1997,18(4) :97 - 136.

二级参考文献71

  • 1玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 2CAIRNS S H,DICKSON K L,ATKINSON S F. An examination of measuring selected water quality trophic indicators with SPOT satellite HRV data[J]. Photogram Eng Remote Sens., 1997,63:263 - 265.
  • 3WEZERNAK C T,TANIS F J,BAJZA C A. Trophic state analysis of inland lakes[J]. Remote Sens. Environ., 1976,5:147 - 165.
  • 4GITELSON A. Quantitative remote seining methods for real time monitoring inland waters quality[J]. International Journal of Remote Sensing, 1993,14:1269 - 1295.
  • 5KRITIKOS H, YORINKS L, SMITH H. Suspended solids analysis using ERTS- A data[J]. Remote Sens. Envion. ,1974,3:69 - 80.
  • 6CARPENTER D J, CARPENTER S M. M.odding inland water quality using LANDSAT data[J]. Remote Sens. Environ., 1983,13:345 - 352.
  • 7LINDELL T,KARLSSONB. Afurtherdevelopment of thechromaticity technique for satellite mapping of suspended sediment load[J]. Photogram Eng Remote Sens. ,1986,52:1521 - 1529.
  • 8HOOGENBOOM H J,DEKKER A G,ALTHUIS J A. Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters[J]. Remote Sens. Environ., 1998,65:333 -340.
  • 9MOORE G K.Satellite remote sensing of water turbidity[J]. Hydrol. Sci., 1980,25:415 - 421.
  • 10DEKKER A G, VOS R J, PETERS S W M. Comparison of remote sensing data,model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes[J]. The Science of the Total Environment, 2001,268:197 - 214.

共引文献2361

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部