期刊文献+

K-MEANS算法在IDS中的应用研究 被引量:3

Research on Application of K-MEANS Algorithm in IDS
下载PDF
导出
摘要 聚类算法广泛应用于入侵检测系统(IDS)的数据挖掘中。虽然K-MEANS算法是最为经典的聚类算法之一,但是由于入侵检测系统的数据集具有特殊性,直接在其上进行K-MEANS聚类的效果不佳。为了提高K-MEANS在IDS数据集上的聚类准确性,引入一种数据预处理方法。该方法对IDS的记录特征做标准化处理,使原本取值范围差异很大的数值型特征在同一个区间内取值,排除原始数据中不同度量带来的不良影响,从而优化聚类的效果。仿真实验表明,K-MEANS算法对预处理后的IDS数据集的聚类准确度有很大的提高。 Clustering algorithms are widely used in intrusion detection system(IDS) to mine the data.Although K-MEANS is one of the most classical clustering algorithms,the effect is not very good when it is used in IDS directly.The reason is that the data set of intrusion detection system is peculiar.In order to improve the clustering accuracy of K-MEANS on IDS data set,designs a data preprocessing method,which makes the features of IDS record standardized,and makes all features with very different value ranged in the same range.This can exclude the impact of difference between the measured variables of the original data,and can help to improve the effect of clustering.Simulation results show that the clustering accuracy of K-MEANS on the preprocessed IDS data set has been greatly improved.
出处 《计算机技术与发展》 2010年第7期129-131,F0003,共4页 Computer Technology and Development
基金 国家自然科学基金(60863001) 江苏省高校自然科学基础研究项目(08KJB620002) 南京邮电大学校科研基金(NY207051)
关键词 数据挖掘 入侵检测系统 K均值聚类 预处理 data mining intrusion detection system K-MEANS clustering preprocessing
  • 相关文献

参考文献8

  • 1Anderson J P. Computer security thread monitoring and surveillance[ R ]. Fort Washington, PA: J ames P Anderson Co,1980.
  • 2韩东海,王超,李群编著.入侵检测系统实例剖析[M].北京:清华大学出版社,2004.
  • 3熊忠阳,周亚峰.Web访问挖掘的预处理技术的研究[J].计算机技术与发展,2007,17(8):11-14. 被引量:19
  • 4孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1073
  • 5韩家炜,堪博.数据挖掘:概念与技术[M].第2版.范明,孟小峰,译.北京:机械工业出版社,2007.
  • 6Li Lingjuan, Tang Wenyu, Wang Ruchuan. A CBR Engine Adapting to IDS[J]. Lecture Notes on Artifidal Intelligence, 2005,3802 : 334 - 339.
  • 7MIT. MIT's KDD Cup 99 dataset[EB/OL]. 1999- 10. http://kdd. ics. uci. edu/databases/kddcup99. html.
  • 8李玲娟,梁玉龙,王汝传.适用于IDS中数据分类的数值归约算法[J].计算机应用研究,2007,24(12):146-148. 被引量:1

二级参考文献11

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Han Jiawei,Kamber M.Data Mining[M].Beijing:Higher Education Press,2000.
  • 3Serivastava J,Cooley R,Deshpande M,et al.Web Usage Mining:Discovery and Applications of Usage Patterns from Web Data[J].ACM SIGKDD Explorations,2000,1 (2):12-23.
  • 4Spiliopoulou M,Mobasher B,Berendt B,et al.A framework for the evaluation of session reconstruction heuristics in Web usage analysis[J].Informs Journal on Coumputing,2003,15(5):171-179.
  • 5Baglioni M,Ferrara U,Romei A,et al.Preprocessing and mining Weblog data for Web personalization[C]//Proceedings of 8th Natl' conf of the Italian Association for Artificial Intelligence.Pisa,Italy:[s.n.],2003.
  • 6Wang Xidong,Ouyang Yiming,Hu Xuegang,et al.Discovery of User Frequent Access Patterns on Web Usage Mining[C]//In:The 8th International Conference on Computer Supported Cooperative Work in Design Proceedings.[s.l.]:IEEE,2003.
  • 7HAN Jia-wei, KAMBER M. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann Publishers Inc, 2001:14-18, 188 -196.
  • 8QUINLAN J R. Induction of decision trees [ J].Machine Learning, 1986,1 (1) :81-106.
  • 9DUNHAM M H.数据挖掘教程[M].郭崇慧,田凤占,靳晓明,等译.北京:清华大学出版社,2003.79-88.
  • 10赵伟,何丕廉,陈霞,谢振亮.Web日志挖掘中的数据预处理技术研究[J].计算机应用,2003,23(5):62-64. 被引量:62

共引文献1093

同被引文献33

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部