期刊文献+

电沉积宽晶粒尺寸分布纳米镍的拉伸变形组织与变形行为(英文) 被引量:3

Tensile Deformation Microstructures and Deformation Behaviours in Electrodeposited Nanocrystalline Ni with Broad Grain Size Distribution
下载PDF
导出
摘要 选用直流电沉积制备平均晶粒尺寸为27.2 nm,宽晶粒尺寸分布(5~120 nm)的纳米镍(简称宽晶纳米镍),在室温采用拉伸应变速率()突变法测量其应变速率敏感指数(m)。 发现m随的减小而增加,特别在小于2×10-5 s-1时,m快速增加,m在=5×10-6 s-1时达到0.054,表明塑性变形过程中晶界扩散、晶界滑移很可能被激活。在室温进行循环加载-卸载拉伸测试,结果表明宽晶纳米镍晶内存储位错的能力十分有限,当拉伸应力达到1052 MPa,应变为7.8%时,晶内位错密度达到饱和。通过对拉伸断口附近的TEM观察。 The electrodeposited nanocrystalline (nc) Ni with an average grain size of 27.2 nm and with a broad grain size distribution (BGSD) ranging from 5 to 120 nm was prepared. The tensile strain rate () jump test was performed at room temperature to measure the strain rate sensitivity (m). The result shows that m increases with decreasing of . In particular, when is less than 2×10-5 s-1, m increases rapidly which reaches 0.054 at =5×10-6 s-1, indicating that the deformation mechanisms involved in grain boundary diffusion and sliding are possibly activated. The room temperature loading-unloading tensile test was carried out. The results show that the capability of storing dislocations in BGSD nc Ni is very limited and the dislocation density is saturated when the stress reaches 1052 MPa with a strain of 7.8%. From the observation of TEM microstructures in the vicinity of tensile fracture, it is confirmed that there is significant intragranular dislocation sliding similar to that in coarse-grained materialsin the process of plastic deformation of BGSD nc Ni
机构地区 福州大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第6期953-957,共5页 Rare Metal Materials and Engineering
基金 Natural Science Foundation Project of Fujian Province(2008J0145)
关键词 纳米镍 应变速率敏感指数 循环拉伸 变形机制 晶粒长大 nanocrystalline Ni strain rate sensitivity cyclic tension deformation mechanism grain growth
  • 相关文献

参考文献16

  • 1Ovid'ko I A. Review Advanced Materials Science[J], 2005, 10: 89.
  • 2Froseth A G, Derlet P M, Van swygenhoven H. Advanced Engineering Materials[J], 2007, 7:16.
  • 3Liao X Z, Zhou F, Lavemia E Jet al. Applied Physics Letters[J], 2003, 83:632.
  • 4Shan Z W, Stach E A, Wiezorek J M K et al. Science[J], 2004, 305:654.
  • 5Hasnaoui A, Van Swygenhoven H, Derlet P M. Acta Materialia[J], 2002, 50:3927.
  • 6Kumar K S, Suresh S, Chisholm M F et al. Acta Materialia[J], 2003, 51:387.
  • 7Wang Y M, Cheng S, Wei Q M et al. Scripta Materialia[J], 2004, 54:1023.
  • 8Dalla Torre F, Spatig P, Schaublin R et al. Acta Materialia[J], 2005, 53:2337.
  • 9许伟长,戴品强.电沉积宽晶粒度分布纳米镍的组织结构与力学性能研究(英文)[J].稀有金属材料与工程,2009,38(12):2075-2079. 被引量:2
  • 10Wei Y, Bower A F, Gao H. Acta Materialia[J], 2008, 56:1741.

二级参考文献16

  • 1Wang N, Wang Z, Aust KT et al. Materials Science and EngineeringA[J], 1997, 237:150.
  • 2Dalla Torre F, Van Swygenboven H, Victoria M. Acta Materialia[J], 2002, 50:3957.
  • 3Kumar K S, Suresh S, Chisholm M F et al. Acta Materialia[J], 2003, 51:387.
  • 4Schwaiger R, Moser B, Dao Met al. Acta Materialia[J], 2003, 51:5159.
  • 5Fan G J, Fu L F, Wang G Yet al. Journal of Alloys and Compounds[J], 2007, 434-435:298.
  • 6Legros M, Elliott B R, Rittner M N et al. Philosophical Magazine A[J], 2000, 80:1017.
  • 7Wang Y M, Cheng S, Wei Q Met al. Scripta Materialia[J], 2004, 51:1023.
  • 8Rarnesh K Guduru, Linga K Murty, Khaled M Youssef et al. Materials Science andEngineering A[J], 2007, 463:14.
  • 9Tai Hong Yim, Seung Chae Yoon, Hyoung Seop Kim. Materials Science and Engineering A[J], 2007, 449-451:836.
  • 10Gu C D, Lian J S, Jiang Z H et al. Script Materialia[J], 2006, 54: 579.

共引文献1

同被引文献22

  • 1徐文臣,单德彬,李春峰,吕炎.TA15钛合金的动态热压缩行为及其机理研究[J].航空材料学报,2005,25(4):10-15. 被引量:71
  • 2Z.H. Cao,K. Hu,X.K. Meng.Strain rate sensitive stretchability and fracture behavior of nanocrystalline Cu films on flexible substrate[J]. Materials Science & Engineering A . 2012
  • 3Tatiana Gorkaya,Konstantin D. Molodov,Dmitri A. Molodov,Günter Gottstein.Concurrent grain boundary motion and grain rotation under an applied stress[J]. Acta Materialia . 2011 (14)
  • 4S. Ni,Y.B. Wang,X.Z. Liao,S.N. Alhajeri,H.Q. Li,Y.H. Zhao,E.J. Lavernia,S.P. Ringer,T.G. Langdon,Y.T. Zhu.Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion[J]. Scripta Materialia . 2010 (4)
  • 5Z.X. Wu,Y.W. Zhang,D.J. Srolovitz.Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals[J]. Acta Materialia . 2009 (15)
  • 6Hongqi Li,Fereshteh Ebrahimi.Tensile behavior of a nanocrystalline Ni–Fe alloy[J]. Acta Materialia . 2006 (10)
  • 7L. Lu,R. Schwaiger,Z.W. Shan,M. Dao,K. Lu,S. Suresh.Nano-sized twins induce high rate sensitivity of flow stress in pure copper[J]. Acta Materialia . 2005 (7)
  • 8K.S Kumar,H Van Swygenhoven,S Suresh.Mechanical behavior of nanocrystalline metals and alloys 1 1 The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh[J]. Acta Materialia . 2003 (19)
  • 9F. Dalla Torre,H. Van Swygenhoven,M. Victoria.Nanocrystalline electrodeposited Ni: microstructure and tensile properties[J]. Acta Materialia . 2002 (15)
  • 10F Ebrahimi,G.R Bourne,M.S Kelly,T.E Matthews.Mechanical properties of nanocrystalline nickel produced by electrodeposition[J]. Nanostructured Materials . 1999 (3)

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部