期刊文献+

纳米Ag颗粒增强复合钎料蠕变性能的研究 被引量:8

Creep Properties of Ag Nanoparticle Reinforced Sn-Cu Composite Solders
下载PDF
导出
摘要 制备纳米Ag颗粒增强的Sn-Cu基复合钎料。研究不同温度载荷下复合钎料钎焊接头的蠕变断裂寿命,并与Sn-0.7Cu基体钎料钎焊接头进行对比。此外,确定纳米Ag颗粒增强的Sn-Cu基复合钎料钎焊接头在不同温度和应力水平下的应力指数和蠕变激活能,建立复合钎料钎焊接头的稳态蠕变本构方程。结果表明,在不同的温度和应力下,与Sn-0.7Cu钎料钎焊接头相比,纳米Ag颗粒增强的Sn-Cu基复合钎料钎焊接头的蠕变断裂寿命均有所提高,且具有更高的蠕变激活能,说明复合钎料钎焊接头具有更优的抗蠕变性能。 Reinforced Ag nanoparticles were incorporated into Sn-0.7Cu matrix composite solder by a mechanical means in order to improve the creep properties of the solder matrix. The creep-rupture life was studied of Sn-0.7Cu solder joints and composite solder joints reinforced with Ag nanoparticles at different temperatures and applied stresses. Stress exponents and creep activation energy were calculated for Ag nanoparticle reinforced Sn-Cu matrix composite solder joints at different temperatures and stress levels. Steady-state creep constitutive equation of the composite solder joint was established. Results show that at different temperatures and stresses, Ag nanoparticles reinforced Sn-Cu composite solder joints have higher creep rupture life and creep activation energy than Sn-0.7Cu solder joints. It indicates the creep resistance of the composite solder joint with 1 vol% Ag reinforcement addition is better than that of Sn-0.7Cu solder joint
机构地区 北京工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第6期1005-1008,共4页 Rare Metal Materials and Engineering
基金 北京市科技新星计划(2004B03) 霍英东基金(104016)
关键词 纳米颗粒 复合钎料 蠕变断裂寿命 蠕变激活能 蠕变本构方程 nanoparticle composite solder creep rupture life creep activation energy creep constitutive equation
  • 相关文献

参考文献14

  • 1Abtew M, Selvaduray G. Mater Sci Eng Rep[J], 2000, 27(1): 85.
  • 2Eveloy V, Ganesan S, Fukuda Y. IEEE Transaction on Components and Packaging Technologies[J], 2005, 11(4): 884.
  • 3马鑫,董本霞.无铅钎料发展现状[J].电子工艺技术,2002,23(2):47-52. 被引量:73
  • 4McCormack M, Jin S. JOM[J], 1993, 45(7): 36.
  • 5黄明亮,于大全,王来,王富岗.Sn-6Bi-2Ag(Cu,Sb)无铅钎料合金微观组织分析[J].中国有色金属学报,2002,12(3):486-490. 被引量:18
  • 6Gibson A W, Choi S, Bieler T R et al. IEEE 5th International Symposium on Electronics and the Environment[C]. Piscataway NJ: IEEE, 1997:246.
  • 7Pang J, Xiong B, Neo C. Proceeding of IEEE ECTC'03[C]. CMPT NY: IEEE, 2003: 673.
  • 8Frear D R. Electronic and Information Technique[J], 2001, 118(2): 81.
  • 9Guo Fu(郭福).Lead-Free Solder Technology and Application(无铅钎焊技术及应用)[M].Beijing:Science Press,2006:94.
  • 10Tai F, Guo F, Xia Z D et al. Journal of Electronic Materials [J], 2005, 34(11): 1357.

二级参考文献29

  • 1黄明亮.电子封装无铅钎料的研究[M].大连:大连理工大学,2001..
  • 2[1]Richards B P,Levoguer C L,Hunt C P Nimmo K et al.An analysis of the current status of lead-free soldering[R].NPL and ITRI Report,1999.
  • 3[2]IPC Roadmap.A guide for assembly of lead-free electronics[R].IPC,2000.
  • 4[3]Grusd A.Connecting to lead-free solders[J].Circuits Assembly,1999,10(8):32-38.
  • 5[4]Glazer J.Metallurgy of low temperature Pb-free solders for electronic assembly[J].International Materials Review,1995,40(2):65-93.
  • 6[5]Miller C M,Anderson I E,Smith J F.A viable tin-lead solder substitute:Sn-Ag-Cu[J].Journal of Electronic Materials,1994,23(7):595-601.
  • 7Mei Z, Grivas D, Shine M C, et al. Superplastic creep of eutectic tin-lead solder joints[J]. Journal of Electronic Materials, 1990, 19(11): 1273 -1280.
  • 8Dieter G E. Mechanical metallurgy [M]. Third Edition.McGraw-Hill Inc. New York, 1986. 432 -435.
  • 9Raeder C H, Schmeelk G D, Mitlin D, et al. Isothermal creep of eutectic SnBi and SnAg solder and solder Joints[A]. IEEE/CPMT Int'1 Electronics Manufacturing Tchnology Symposium, 1994, 113 -125.
  • 10Reynolds H L, Kang S H, Morris J W. The creep behavior of In-Ag eutectic solder joints[J]. Journal of Electronic Materials, 1999, (28): 69 -75.

共引文献92

同被引文献243

引证文献8

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部