期刊文献+

半绝对偏差投资组合模型构建及其应用 被引量:3

The Construction and Application of Semi-absolute Deviation Portfolio Models
下载PDF
导出
摘要 通过对模糊隶属函数以及基金投资组合基本模型的适当变形,构建了带交易费及流动性约束的极大极小-半绝对偏差投资组合模型.选取5支证券,依据2008年全年的数据作为样本数据,按投资者的不同偏好得出不同的最优投资策略,并对几种情形进行了对比,结果显示此模型能很好地反映出投资者的主观意愿,具有很好的灵活性. Through the appropriate transformation of fuzzy membership function and the basic fund portfolio Model,and considering the transaction costs and liquidity constraints,a Minimax-Semi-absolute Deviation portfolio model was given.Selecting five securities's whole years'data of 2008 as the sample data,and according to the different preferences of investors,the optimal investment strategies of the model were solved,and several cases were compared.The results show that this model can reflect the subjective views of the investors and has good flexibility.
出处 《经济数学》 北大核心 2010年第2期57-61,共5页 Journal of Quantitative Economics
关键词 模糊决策 极大极小-半绝对偏差 投资组合模型 fuzzy decision Minimax-Semi-absolute Deviation Portfolio Models
  • 相关文献

参考文献4

  • 1LEON T,LIERN V,VERCHER E.Viability of infeasible portfolio selection problems:a fuzzy approach[J].European Journal of Operational Research,2002,139:178-189.
  • 2WATADA J.Fuzzy portfolio model for decision making in investment[M] //YOSHIDA Y.Dynamical Aspects in Fuzzy Decision Making Heidelberg:Physica-Verlag,2001:141-162.
  • 3CARLESSON C,FULLER R.On possibilistic mean value and variance of fuzzy numbers[J].Fuzzy Sets and Systems,2001,122:315-326.
  • 4杨丰梅,吴国云.带交易费的最优投资组合选择的极大极小方法[J].系统科学与数学,2008,28(9):1077-1083. 被引量:3

二级参考文献19

  • 1吴国云,杨丰梅.带交易费的证券组合选择模型的一种化简求解方法[J].北京化工大学学报(自然科学版),2006,33(6):107-109. 被引量:2
  • 2Krasovskii N N and Lidskii D A. Analysis design of controller in systems with random attributes- Part 1. Automat. Remote Contr., 1961, 22: 1021-1025.
  • 3Mariton M. Jump Linear Systems in Automatic Control. New York: Marcel Dekker, 1990.
  • 4Ji Y D and Chizeck H J. Controllability, stability, and continuous-time Markovian jump linear quadratic control. IEEE Transactions on Automatic Control, 1990, 35(7): 777-788.
  • 5Boukas E K and Liu Z K. Jump linear quadratic regulator with controlled jump rates. IEEE Transactions on Automatic Control, 2001, 46(2): 301-305.
  • 6Mao X R. Stability of stochastic differential equations with Markovian switching. Stochastic Process and Their Applications, 1999, 79(79): 45-67.
  • 7Yuan C G and Mao X R. Asymptotic stability in distribution of stochastic differential equations with Markovian swithching. Stochastic Process and Their Applications, 2003, 103: 277-291.
  • 8Mao X R. A note on Lasalle-type theorems for stochastic differential delay equations. Journal of Mathematical Analysis and Applications, 2002, 268: 125-142.
  • 9Mao X R. Exponential Stability of Stochastic Differential Equations. New York: Dekker, 1994.
  • 10Kallenberg O. Foundations of Modern Probability. Berlin/Heidelberg/New York: Springer Verlag, 2002.

共引文献2

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部