期刊文献+

一阶时滞系统的鲁棒α-稳定性区域分析 被引量:3

ANALYSIS FOR ROBUST α-STABILITY OF ONE ORDERDELAY DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 主要研究了滞后型一阶时滞系统的鲁棒α-稳定性,即参数在一定区间上任意取值,都能确保系统的平衡点的α-稳定性.给出了两种分析方法,其中一种基于Hayes第二定理,另一种基于LambertW函数.两种方法给出的结果是一致的.最后,几个实例说明了文中方法的有效性. The robust α-stability of first order retarded time-delay system was studied,in which the time-delay system is α-stability for all coefficients selected arbitrarily in the interval.Two ways were given for the α-stability analysis,one was based on Hayes Theorem,and the other was based on the Lambert W function.We have the same results by using these two ways respectively.Finally,some examples show that the methods work effectively.
作者 狄成宽
出处 《动力学与控制学报》 2010年第2期132-136,共5页 Journal of Dynamics and Control
关键词 时滞 α-稳定性 鲁棒稳定性 稳定性区域 LambertW函数 time-delay α-stability robust stability stable region lambert W function
  • 相关文献

参考文献11

  • 1Hu H Y, Wang Z H. Dynamics of controlled mechanical systems with delayed feedback. Berlin :Springer-Verlag, 2002.
  • 2Huang L. Fundamentals of stability and robustness. Beijing : Science Press, 2003.
  • 3Wang Z B, Ha H Y, Wang H L. Robust stabilization to non-linear delayed systems via delayed state feedback: the averaging method. Journal of Sound and Vibration ,2005, 279:937 - 953.
  • 4狄成宽.时滞动力系统的α-稳定性分析[J].南京工程学院学报(自然科学版),2008,6(3):1-6. 被引量:3
  • 5Mori T, Noldus E, Kuwahara M. A way to stabilize linear systems with decayed state . Automatiea, 1983, 19:571 - 572.
  • 6Moil T, Fukuma M, Kuwahara M. On an estimate of the decay rate for stable linear delay Systems. Int. J. Control,1982, 36:95.
  • 7Beretta E, Kuang Y. Geometric stability switches criteria in delay differential systems with delay dependent parameters. SLAM. J. Math. Anal, 2002, 33 : 1144 - 1165.
  • 8Shinozaki H, Mori T. Robust stability analysis of linear time-delay systems by Lambert W function: Some extreme point results. Automatica, 2006, 42: 1791 - 1799.
  • 9Hwang C, Cheng Y C. A note on the use of the Lambert W function in the stability analysis of time-delay systems. Automatica, 2005, 41 : 1979 - 1985.
  • 10Stephen G, Kuang Y. A stage structured predator-prey model and its dependence on matura-tion delay and death rate. Math. Biol, 2004, ,49:188-200.

二级参考文献30

  • 1[1]MORI T,NOLDUS E,KUWAHARA M.A way to stabilize linear systems with decayed state[J].Aut-omatiea,1983,19:571-572,
  • 2[2]MORI T,FUKUMA M,KUWAHARA M.On an estimate of the decay rate for stable linear delay systems[J],Int J Control,1982,36:95-97.
  • 3[3]HMAMED A.Comments on "On an estimate of the delay rate for stable linear delay system"[J].Int J Control,1985,42 (2):539-540.
  • 4[4]MORI T.Further comments on "On an estimate of the decay rate for stable linear delay system"[J].Int J Control,1986,43 (5):1613-1614.
  • 5[5]BOURLES H.α-stability of systems governed by a functional equationwextension of results concerning linear delay systems[J].Int J Control,1987,45(6):2233-2234.
  • 6[6]BOURLES H.α-stability and robustness of large-scale interconnected systems[J],Int J Control,1987,45(6):2221-2232.
  • 7[7]WANG R J,WANG W J.α-stability analysis of rertubed systems with multiple noncommensurate time delays[J].IEEE Transactions on Circuits and Systems-1:Fundamental Theory and Applications,1996,43(4):349-352.
  • 8[8]WANG Z H,HU H Y.Stability switches of time-delayed dynamic systems with unknown param-eters[J].Join'hal of Sound and Vibration 2000,233(2):215-233.
  • 9[9]HU H Y,DOWELL E H.Resonance of harmonically forced duffing oscillator with delay state feedback[J].Nonlinear Dynamics,1998,15:311-327.
  • 10[10]BERETTA E,KUANG Y.Geometric stability switches criteria in delay differential systems with delay dependent parameters[J],SIAM J Math Anal,2002,33:1144-1165.

共引文献9

同被引文献21

  • 1施鼎汉,曾晓军.线性时变系统的区间稳定性与鲁棒稳定性[J].控制理论与应用,1994,11(1):34-39. 被引量:8
  • 2马苏奇,陆启韶.具有非线性出生率的时滞Lasota-Wazewska模型的稳定性分岔[J].南京师大学报(自然科学版),2005,28(2):1-5. 被引量:4
  • 3Jianquan LI,Zhien MA.ULTIMATE STABILITY OF A TYPE OF CHARACTERISTIC EQUATION WITH DELAY DEPENDENT PARAMETERS[J].Journal of Systems Science & Complexity,2006,19(1):137-144. 被引量:4
  • 4Q L Han. Robust stability of uncertain delay-differentialsystems of neutral type. Automatic, 2002,38 : 71 - 723.
  • 5E Beretta, Y Kuang. Geometric stability switches criteria in delay differential systems with delay dependent parame- ters. SIAM. J. Math. Anal, 2002, 33:1144-1165.
  • 6Alsing P M, Kovanis V and Gavrielides A. Lang and Kobayashi phase equation[J]. Physical Review A, 1996, 53 (6): 4429-4434.
  • 7Pieroux D, Mandel P. Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity[J]. Physical Review E, 2003, 67: 1-7.
  • 8Pieroux D and Mandel P. Low-frequency fluctuations in the Lang-Kobayashi equations[J]. Physical Rewiew E, 2003, 68: 1-6.
  • 9Cooke K L. An epidemic equation with immigration[J]. Math Biosci, 1976, 29: 135-158.
  • 10Torelli L, Verminglio R. On stability of continuous quadrature rules for differential equations with several constant delay[J]. IMA Journal of Numerical Analysis, 1993, 13: 291-302.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部