期刊文献+

含表面裂纹简支梁的非线性振动分析 被引量:4

NON-LINEAR VIBRATION ANALYSIS OF SIMPLY SUPPORTED BEAMS WITH AN EDGE CRACK
下载PDF
导出
摘要 对含表面裂纹简支梁在大幅振动下的几何非线性进行了理论分析,从建立了梁的非线性振动的半解析解.用Rayleigh方法将振型函数表示为线性模型振型函数的组合,建立了梁非线性振动的第一阶振型函数的显式表达式,数值模拟计算了不同的裂纹深度和给定不同第一函数系数a1对梁最大位移的影响.建立的显式方程简单,易于工程应用. This paper theoretically investigatied the geometrically non-linear free vibrations of a simply supported beam containing an open crack under large vibration amplitudes,and established a semi-analytical solution about the beam of non-linear vibrations.Using the combined mode functions of line model to express the mode functions based on the Rayleigh method,the first mode explicit expression of non-linear vibrations was established.The effects of various crack depth and the assigned different first function contribution a1 on the maximum displacements of the crack beam were numerically simulationed.An explicit solution is simple and ready to use for engineering applications.
出处 《动力学与控制学报》 2010年第2期177-181,共5页 Journal of Dynamics and Control
关键词 裂纹梁 几何非线性 固有频率 非线性振型 crack beam geometrically non-linear natural frequency non-linear vibration of shape
  • 相关文献

参考文献10

  • 1王璋奇,贾建援.悬臂梁裂纹参数的识别方法[J].机械强度,2002,24(2):225-227. 被引量:18
  • 2Chonros T G, Dimarogonas A D. Vibration of a creaked cantilever beam. Journal of vibration and acoustics, 1998, 120:742 - 745.
  • 3李学平,余志武.基于动力特性的结构损伤识别方法[J].动力学与控制学报,2006,4(1):84-87. 被引量:10
  • 4El Bikri K, Benamar R, Bennouna M M. Geometrically non-linear free vibrations of clamped-clamped beams with an edge crack. J. Comput Struct, 2006, 54:485 - 502.
  • 5EI Kadiri M, Benamar R, White G. Improvement of the semi-analytical method, based on Hamilton' s principle and spectral analysis, for determination of the geometrically non-linear free response of thin straight structures, part Ⅰ: Application to C-C and SS-C beam. J. Sound Vib, 2002, 249 : 263 - 305.
  • 6Amabili M, Garziera R. A technique for the systematic choice of admissible functions in the Rayleigh-Ritz method. J. Sound Vib, 1999,224:519-39.
  • 7蒲亚鹏,陈进.简支梁中裂纹参数的识别[J].机械科学与技术,2001,20(6):813-814. 被引量:1
  • 8吴国荣,张晓君.含裂纹梁自由振动分析[J].船舶力学,2007,11(5):798-803. 被引量:12
  • 9R.克拉夫,J.彭津著,王光远等校译.结构动力学.北京:高等教育出版社,2006.
  • 10吴宁祥,谢里阳,吴克勤.含裂纹一维欧拉梁的裂纹无效位置分析[J].应用力学学报,2007,24(1):120-123. 被引量:5

二级参考文献40

  • 1李兵,陈雪峰,胡桥,何正嘉.基于小波有限元的悬臂梁裂纹识别[J].振动工程学报,2004,17(2):159-164. 被引量:22
  • 2刘瑞岩,张健保.结构裂纹时序分析的几种识别法[J].振动工程学报,1993,6(3):275-279. 被引量:4
  • 3和兴锁,贾振波,李信真,孟宪颜.含裂纹转子的振动特性计算用于裂纹在线检测的研究[J].机械科学与技术,1994,13(1):8-12. 被引量:2
  • 4胡海昌.参数小变化对本特征的影响[J].力学实践,1981,3(2):29-30.
  • 5沈亚鹏 唐照千.裂纹对悬臂梁振动频率的影响[J].固体力学学报,1982,3(2):247-251.
  • 6王德明.近似估算裂纹部位的折线图法[J].振动与冲击,1987,6(2):34-41.
  • 7[1]Doebling SW,Farra CR.A summary review of vibration-based damage identification method.Shock Vibr Dig,1998,30(2):91~105.
  • 8[2]Salawu OS.Detection of structural damage through changes in frequency.A review.Engng Struct,1997,19(9):718~723.
  • 9[3]Pandey AK,Biswas M.Damage detection from changes in curvature mode shapes.Journal of sound and vibration,1991,145:321~332.
  • 10[4]Usik Lee,Jinho Shin.A frequency response function-based structural damage identification method.Computers and structures,2002,80:117~132.

共引文献39

同被引文献29

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部