期刊文献+

基于粒子群优化算法的LS-SVM字符识别模型

LS-SVM character recognition model based on particle swarm optimization
下载PDF
导出
摘要 提出一种基于粒子群优化算法优化相关参数的最小二乘支持向量机(LS-SVM)的字符识别模型。利用相关的字符数据,分别使用本方法和基于网格搜索的最小二乘支持向量机方法进行识别。仿真结果表明,该方法的精确度高于其它两种方法。 A character recognition model based on Least Squares Support Vector Machines(LS-SVM) is proposed in this paper,of which related parameters are optimized using Particle Swarm Optimization(PSO).A case study based on character data is carried out using the proposed method,and general LS-SVM method.The result shows that LS-SVM with parameters optimized by PSO is more effective than the other.
作者 刘玲 张兴会
出处 《天津工程师范学院学报》 2010年第2期26-28,共3页 Journal of Tianji University of Technology and Education
基金 天津工程师范学院科研发展基金项目(Z2004017)
关键词 粒子群算法 最小二乘支持向量机 字符识别 particle swarm optimization(PSO) LS-SVM character recognition
  • 相关文献

参考文献7

二级参考文献25

  • 1赵宇,李兵,李秀,刘文煌,任守榘.基于改进支持向量机的客户流失分析研究[J].计算机集成制造系统,2007,13(1):202-207. 被引量:41
  • 2徐贤浩,任英.企业即时定制生产能力循环模型及模糊评价[J].中国机械工程,2007,18(12):1465-1470. 被引量:2
  • 3Vapnik Vladimir N. The Nature of Statistical Learning Theory [M]. Springer-Verlag, New York, Inc, 2000.
  • 4Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition[M]. Kluwer Academic Publishers, Boston, 1999.
  • 5Joachime T. Estimating the Generalization Performance of a SVM Efficiently[M]. Informatik LSV Ⅲ, University Dortmund, 2001.
  • 6董春曦 饶鲜 杨绍全.支持向量机推广能力估计方法综述[A].第一届全国人工智能基础学术会议,2002..
  • 7Lunts A, Brailovskiy V. Evaluation of Attributes Obtained in Statistical Decision Rules[J]. Enginering Cybernetics, 1967,3:98-109.
  • 8Murphy P M, Aha Irvine D W. CA: University of California,Department of Information and Computer Science [ EB/OL ].http://www. ics. uci. edu/~ mlearn/MLRepository. html, 1994.
  • 9CHANG P C, LIU C H, LAIR K. A fuzzy case-based reasoning model for sales forecasting in print circuit board industries[J].Expert Systems with Applications, 2008, 34(3): 2049-2058.
  • 10CHANG P C, WANG Y W. Fuzzy Delphi and back-propaga tion model for sales forecasting in PCB industry[J]. Expert Systems with Applications, 2006, 30(4):715-726.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部