期刊文献+

锂离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2在LiNO_3溶液中的电化学性能研究 被引量:2

Research on Electrochemical Performance of Lithium-Ion Battery Cathode Material LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 in Aqueous LiNO_3 Solution
下载PDF
导出
摘要 由溶胶凝胶法合成的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2在水溶液体系中具有优异的高倍率充放电性能,放电时能够输出极高功率密度.XRD表征证明合成的LiNi1/3Co1/3Mn1/3O2材料具有层状α-NaFeO2结构,SEM形貌显示材料的粒径约为500nm,恒电流充放电测试表明LiNi1/3Co1/3Mn1/3O2材料在pH12的2mol·L-1LiNO3溶液中,以2C(0.36A/g)倍率充放时,比容量达到了147mAh/g.如以80C(14.4A/g)、150C(27A/g)和220C(39.6A/g)的倍率充放,材料的比容量仍可达到64mAh/g、33mAh/g和16mAh/g,而全电池的功率密度分别达到2574W/kg、3925W/kg、4967W/kg.其中80C倍率充放,经1000周循环后,容量保持率为90.9%. The cathode material of LiNi1/3Co1/3Mn1/3O2 synthesized by sol-gel method shows excellent high rate performance,and high output power density during discharge process. A well-ordered layered α-NaFeO2 structure was confirmed by XRD and a primary particle size of about 500 nm was indicated by SEM. Galvanostatic charge-discharge test indicates that LiNi1/3Co1/3Mn1/3O2 in 2 mol·L-1 LiNO3 aqueous solution with pH 12 reached a ca-pacity of 147 mAh/g while charged and discharged at 2C. The capacities were 64、33、16 mAh/g with 80C ( 14. 4 A/g) 、150C( 27 A/g) and 220C ( 39. 6 A/g) charge/discharge rates,while the power densities of the battery were 2574 W/kg、3925 W/kg、4967 W/kg,respectively. It retained 90. 9% of the initial capacity after 1000 cycles at 80 C.
出处 《电化学》 CAS CSCD 北大核心 2010年第2期151-155,共5页 Journal of Electrochemistry
基金 国家自然科学基金项目(200933005 20903077) 973项目(2009CB220102) 福建省科技项目(2006H0090 2008H0087)资助
关键词 水溶液锂离子电池 LINI1/3CO1/3MN1/3O2 正极材料 溶胶凝胶法 aqueous lithium-ion battery LiNi1/3Co1/3Mn1/3O2 cathode material sol-gel method
  • 相关文献

参考文献12

  • 1Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [ J ]. Nature, 2001,144, (15) :359-367.
  • 2Li W,Dahn J R, Wainwright D S. Rechargeable lithium ion batteries with aqueous electrolytes [ J ]. Science, 1994,264 : 1115.
  • 3He P, Zhang X, Wang Y G, ctal. Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions [ J ]. Journal of the Electrochemical Society,2008,155 (2) : A144-A150.
  • 4XiaYongyao(夏永姚),LuoJiayan(罗家严),WangYonggang(王永刚).Reserch progress in aqueous lithium ion battery [J].Chinese Journal of Power Sources,2008,32(7) : 431-434.
  • 5Luo Jiayan, Xia Yongyao. Aqueous lithium-ion battery Li- Ti2 ( PO4 )3/LiMn2O4 with high power and energy densities as well as superior cycling stability [ J ]. Adv Funct Mater,2007,17:3877-3884.
  • 6Ohzuku, Makimura. Layered lithium insertion material of LiCo1/3Ni1/3 Mn1/3O2 for lithium-ion batteries [ J ]. Chemistry Letters,2001, (7) :642-643.
  • 7Tsai Y W, Hwang B J, Coder G. , et al. In-situ x-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3 Co1/3 Mn1/3 O2 cathode material during electrochemical cycling [ J ]. Chem Mater,2005,17(12) :3191-3199.
  • 8Yabuuchi N, Koyama Y, Nakayama N, et al. Solid-state chemistry and electrochemistry of LiCo1/3 Ni1/3 Mn1/3 O2 for advanced lithium-ion batteries II. Preparation and characterization[J]. Journal of the Electrochemical Society,2005,152 (7) : A1434-A1440.
  • 9Wang Y G, Luo J Y, Wu W,et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds HI. Capacity fading mechanism of LiCo1/3 Ni1/3Mn1/3O2 at different pH electrolyte solutions[J]. Journal of the Electrochemical Society,2007,154 (3) : A228-A234.
  • 10Li J,Zhang Z R, Guo X J, et al. The studies on structural and thermal properties of delithiated LixNi1/3Co1/3 Mn1/3O2 (0 ≤ x≤ 1 ) as a cathode material in lithium ion batteries [ J ]. Solid State Ionics, 2006, 177 : 1509- 1516.

同被引文献52

  • 1李运姣,常建卫,李洪桂,赵中伟,孙召明,霍广生,孙培梅.富锂型掺钴尖晶石锂锰氧化物的结构与电化学性能[J].中南大学学报(自然科学版),2004,35(3):381-385. 被引量:14
  • 2杨赛,黄可龙,刘素琴,王海波.LiFePO_4在饱和LiNO_3溶液中的锂化行为[J].无机化学学报,2007,23(1):141-144. 被引量:5
  • 3黄可龙,杨赛,刘素琴,王海波.磷酸铁锂在饱和硝酸锂溶液中的电极过程动力学[J].物理化学学报,2007,23(1):129-133. 被引量:6
  • 4Wang GJ, Qu Q T , Wang B, et a1. Electrochemical behavior of LiCoO, in a saturated aqueous Li, S04 solution[J]. Electrochimica Acta, 2009, 54(4): 1199-1203.
  • 5Wang Y G, LouJ Y, Wu W, et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds III. Capacity fading mechanism of LiCol/3 Nil/3 Mnl/3 0, at different pH electrolyte solutions[J].Journal of the Electrochemical Society, 2007, 154 (3): A228-A234.
  • 6Abou-El-Sherbini K S, Askar M H. Lithium insertion into manganese dioxide polymorphs in aqueous electrolytes[J].Journal of Solid State Electrochemistry, 2003, 7 (7): 435-441.
  • 7Iayalakshmi M, Rao M M, Scholz F. Electrochemical behavior of solid lithium manganate (LiMn, 04) in aqueous neutral electrolyte solutions[J]. Langmuir, 2003, 19 (20): 8403-8408.
  • 8Mi C H, Zhang X G, Li H L. Electrochemical behaviors of solid LiFeP04 and Lio.99Nbo.oIFeP04 in Li,S04 aqueous electrolyte[J].Journal of Electroanalytical Chemistry, 2007, 602(2): 245-254.
  • 9Li W, DahnJ R, Wainwright D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118.
  • 10KohlerJ, Makihara H, Uegaito H, et al. LiV3 Os : characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46(1): 59-65.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部