期刊文献+

微晶碳电活化过程中离子尺寸效应研究 被引量:3

Influence of Ions Dimension on the Electric Field Activation of Micro-Crystallite Carbon
下载PDF
导出
摘要 以石油焦基微晶碳作为电极材料,并由N2吸附,X射线衍射(XRD)表征其孔结构和微晶结构.研究了4种电解液Et4NBF4/PC(四乙基铵四氟硼酸盐/碳酸丙烯酯)、Et4NBF4/AN(四乙基铵四氟硼酸盐/乙腈)、Bu4NBF4/PC(四丁基铵四氟硼酸盐/碳酸丙烯酯)和Bu4NBF4/AN(四丁基铵四氟硼酸盐/乙腈)的微晶碳电容器特性.结果表明:电解质离子与溶剂AN的溶剂化半径较小,容易嵌入类石墨微晶碳层,其于AN的电活化电位比在PC中的低,致使电活化程度更深,材料的表面利用率更高,电容量较大.电解质阳离子(Et4N+,Bu4N+)大小对电活化影响不大.电活化使材料类石墨微晶层间距(d002)变大,离子尺寸越大,层间距增加越明显. Micro-crystallite carbon ( CC) was synthesized by KOH activation of carbonized petroleum coke precursors. The porous properties structure and crystallite structure were characterized by N2 adsorption-desorption, X-ray diffraction ( XRD) measurements. The capacitive behavior of CC was investigated in the electrolyte of Et4NBF4 /PC,Et4NBF4 /AN,Bu4NBF4 /PC and Bu4NBF4 /AN,respectively. Results showed that the lower potential of electric field activation ( EFA) was obtained in the solvent of AN than in PC,which was ascribed to the fact that smaller solvated ions dimension in AN facilitating the intercalation of the solvated ions into micro-crystallite interlayer. The extent of EFA was more remarkable in AN under the same operating voltage due to its lower EFA potential; and consequently,produced the higher specific capacitance. With regarding to the Bu4NBF4 and Et4NBF4,little effect of cations size on the EFA process was observed,compared with that of solvent. After charge-discharged,micro-crystallite interlayer of CC swelled,indicating that the ion intercalation occurred during the EFA. And the interlayer expansion increased to a greater extent when the dimension of intercalated-ion was larger.
出处 《电化学》 CAS CSCD 北大核心 2010年第2期192-197,共6页 Journal of Electrochemistry
基金 国家自然科学重点基金(50730003)资助
关键词 微晶碳 电化学活化 有机电解液 micro-crystallite carbon electric field activation organic electrolyte
  • 相关文献

参考文献2

二级参考文献31

共引文献10

同被引文献45

  • 1朱春野,曹高萍.纳米门炭及纳米门电容器[J].新型炭材料,2005,20(4):380-381. 被引量:17
  • 2周鹏伟,李宝华,康飞宇,曾毓群.椰壳活性炭基超级电容器的研制与开发[J].新型炭材料,2006,21(2):125-131. 被引量:38
  • 3Burke A. Ultracapacitors:Why, how, and where is the technology [J]. J Power Sources,2000,91(1):37.
  • 4Frackowia E. Carbon material for supercapacitor application [J]. Phys Chem Chem Phys, 2007,9:1774.
  • 5Pandolfo A G, Hollenkamp A F. Carbon properties and their role insupercapacitors[J]. J Power Sources, 2006,157:11.
  • 6Takeuchi M, Koike K, Mogami A, et al. Electric doublelayer capacitor and carbon material therefore: US, 6721168[P]. 2004-04-13.
  • 7Mogami A. Electric double-layer capacitor with high energy density[J]. Appl Phys (Japanese), 2004,73 (8) : 1076.
  • 8Takeuch M, Mamyama T, Koike K, et al. Electrochemical intercalation of tewaethylammoniunl tetmfluoroborate into the KOH-reated carbons consisting of multi-graphene sheets for electric double-layer capacitor [J]. Electrochemistry, 1998,66(12): 1311.
  • 9Okamura M. Production status of mogate capadtots and integrated electronics[C]//The 14th international seminal on double layer capacitors and hybrid energy storage devices. Florida, 2004:126.
  • 10Michio Okamura. Introducing the "nanogate" capacitors[J]. IEEE Power Electron Soc News Latt, 2004,16 (10): 9.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部