期刊文献+

游离细胞腈水合酶催化丙烯腈水合反应的双稳态反应动力学 被引量:2

Bi-steady state reaction kinetics of nitrile hydratase in free resting cells
下载PDF
导出
摘要 腈水合酶是能够催化丙烯腈水合生成丙烯酰胺的一种重要的工业酶。本研究建立了游离细胞腈水合酶催化丙烯腈水合反应的双稳态反应动力学模型,关联了底物浓度、产物浓度和温度等主要因素对反应速率(表观酶活)的影响。在实验研究的基础上,通过麦夸特及全局最优化算法求解了动力学模型。结果表明,游离细胞腈水合酶催化的双稳态反应动力学模型是比较典型的产物抑制型,当产物浓度逐渐增大时,高浓度的产物将抑制腈水合酶的活性。当底物浓度<10g·L-1时,由于底物加入反应体系时产生的局部瞬时高浓度,腈水合酶催化的丙烯腈水合反应的表观反应速率不随底物浓度变化。当底物浓度≥10g·L-1时,底物产物浓度对反应速率具有显著影响。温度对酶活的影响也十分显著,相同底物产物浓度下,28℃时的酶催化水合反应速率是15℃时的3.3倍。 Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile hydration.The reaction kinetics of NHases in free resting cells of Rhodococcus sp.or Nocardia sp.was presented based on a bi-steady state assumption.Effects of substrate concentration,product concentration and hydration temperature were investigated experimentally and correlated by Levenberg-Marquardt method and global optimal method.The kinetics model showed that reaction would be inhibited when the concentration of product was high.When the mean concentration of substrate was lower than 10 g·L-1,the extrinsic hydration reaction rate showed a changeless base-value with respect to the altered substrate concentration,due to an instantaneous partial high concentration effect of substrate when being added into the reaction system.Effect of hydration temperature to reaction rate was rather significant.The nitrile hydratase activity at 28℃ was 3.3-fold of that at 15℃ under the same concentrations of substrate and product.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第7期1783-1789,共7页 CIESC Journal
基金 全国百篇优秀博士学位论文作者专项(200345) 国家高技术研究发展计划项目(2007AA02Z201) 国家重点基础研究发展计划项目(2007CB714304)~~
关键词 腈水合酶 反应动力学 游离细胞 双稳态假设 麦夸特及全局最优化算法 nitrile hydratase reaction kinetics free resting cell bi-steady state assumption Levenberg-Marquardt method and global optimal method
  • 相关文献

参考文献5

二级参考文献45

  • 1沈寅初,张国凡,韩建生.微生物法生产丙烯酰胺[J].工业微生物,1994,24(2):24-32. 被引量:24
  • 2孔凡玲.General situation of acrylamide production technology with bioconversion[J].安徽化工,1998,5:5-6.
  • 3Bell KS, Philp JC, Aw DWJ, et al. The genus Rhodococcus. J Appl Microbiol, 1998, 85: 195-210.
  • 4Martinkova L, Uhnakova B, Patek M, et al. Biodegradation potential of the genus Rhodococcus. Environ Int, 2009, 35: 162-177.
  • 5Baxter J, Cummings SP. The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie Van Leeuwenhoek, 2006, 90: 1-17.
  • 6Briglia M, Rainey FA, Stackebrandt E, et al. Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int J Syst Bacteriol, 1996, 46: 23-30.
  • 7Di Gennaro P, Rescalli E, Galli E, et al. Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Res Microbiol, 2001, 152: 641-651.
  • 8Kim YH, Engesser KH. Degradation of alkyl ethers, aralkyl ethers, and dibenzyl ether by Rhodococcus sp. strain DEE5151, isolated from diethyl ether-containing enrichment cultures. Appl Environ Microbiol, 2004, 70: 4398-4401.
  • 9Kim D, Chae JC, Zylstra GJ, et al. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl Environ Microbiol, 2004, 70: 7086-7092.
  • 10Iwasaki T, Takeda H, Miyauchi K, et al. Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in a PCB degrader, Rhodococcus sp. strain RHA1. Biosci Biotechnol Biochem, 2007, 71: 993-1002.

共引文献45

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部