期刊文献+

基于核机器学习的腔体滤波器辅助调试 被引量:3

Computer-Aided Tuning of Cavity Filters Using Kernel Machine Learning
下载PDF
导出
摘要 研究了一种基于核机器学习的腔体滤波器辅助调试方法.该方法根据工程中的调试经验数据,首先使用核机器学习算法建立了螺栓调整量和滤波器电性能之间的影响关系模型.然后应用此模型,使用优化技术构建了滤波器的辅助调整方法.实际滤波器的实验结果表明了该方法的有效性.该方法比较适用于工程中批量生产的腔体滤波器的辅助调试. A computer-aided tuning method based on machine learning is proposed in the paper.In the method,an effect model that reveals the relationships between the tunable screws and filter electrical performance is firstly developed by using a kernel algorithm,according to the data sets from tuning experience of technician.Then,a tuning procedure of filters is constructed by using the developed machine learning model.Finally,some experiments are carried out,and the experimental results confirm the effectiveness of the method.The approach is particularly suited to the computer-aided tuning of volume-producing filters.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1274-1279,共6页 Acta Electronica Sinica
基金 国家973重点基础研究发展规划(No.61358) 国家自然科学基金资助(No.50475171 10433020)
关键词 腔体滤波器 辅助调试 机器学习 螺栓 经验数据 cavity filters computer-aided tuning machine learning tunable screws tuning experience
  • 相关文献

参考文献20

  • 1R V Snyder.Practical aspects of microwave filter development[J].IEEE Microwave Magazine,2007,8(2):42-54.
  • 2苏涛,梁昌洪,谢拥军.广义Chebyshev最优滤波器设计[J].电子学报,2003,31(z1):2018-2020. 被引量:13
  • 3A Lindaer,E Biebl.A manual tuning method for coupled cavity filters[A].Proceedings of the 36th European Microwave Conference[C].Piscataway:IEEE,2007.1340-1342.
  • 4张秀华,雷建华.微波滤波器计算机辅助调试的发展现状及趋势[J].信息与电子工程,2007,5(5):395-399. 被引量:5
  • 5A R Mirzai,C F N Cowan,T M Crawford.Intelligent alignment of waveguide filters using a machine learning approach[J].IEEE Transactions on Microwave Theory and Technique,1989,37(1):166-173.
  • 6C Tomasz,M Jerzy.Heutistic methods for automated microwave filter tuning[A].17th International Conference on Microwaves,Radar and Wireless Communications[C].Piscataway:IEEE.2008.463-469.
  • 7B H Clark.The coupling matrix in low-pass prototype filters[J].IEEE Microwave Magazine,2007,8(2):70-76.
  • 8V Miraftab,M Yu.Generalized lossy microwave filter coupling matrix synthesis and design using mixed technologies[J].IEEE Transactions on Microwave Theory and Techniques,2008,56(12):3016-3027.
  • 9K Masoud,S N Safieddin,K C Sujeet,et al.Computer diagnosis and tuning of rf and microwave filters using model-based parameter estimation[J].IEEE Transactions on Circuits and Systems,2002,49(9):1263-1270.
  • 10V Miraftab,R R Mansour.Computer-aided tuning of microwave filters using fuzzy logic[J].IEEE Transactions on Microwave Theory and Technique,2004,50(12):2781-2788.

二级参考文献38

  • 1李胜先,吴须大,傅君眉.一种微波滤波器机辅调试的新方法[J].空间电子技术,2004,1(2):4-11. 被引量:6
  • 2翟阳文,赵永久.矩形波导感性膜片复功率守恒法的分析[J].西安电子科技大学学报,2006,33(4):630-634. 被引量:5
  • 3周志鹏.微波电路的计算机辅助调试[J].电子器件,1997,20(1):234-237. 被引量:1
  • 4[1]Matthaei G L, Young L and Jones E M T. Microwave filters, impedance-matching networks and coupling structures. New York: McGrawHill, 1964
  • 5[3]Levi E C.Complex- curve fitting. IRE Trans.on Automatic Control. Vol. AC-4 (1959) .gs.37~44
  • 6[4]Dennis J E, Jr. and Schnabel R B. Numerical methods for unconstrained optimization and nonlinear equations. Englewood Cliffs.NJ: Prentice Hall. 1983
  • 7[5]Levy R. Filters with single transmission zeros at real or imaginary frequencies. IEEE Trans. Microwave Theory Tech.. Vol. MTT24, pp172~181 ,Apr. 1976
  • 8[6]Cameron R J. General prototype network synthesis method for microwave filters. ESA J., Vol. 6, pp193~206,1982
  • 9[7]Cameron R J. Fast generation of Chebyshev filter prototypes with asymmetrically prescribed transmission zeros. ESA J., Vol. 6,pp83~95,1982
  • 10[8]Levy R. Synthesis of general asymme tric singly- and doubly-terminated cross-coupling filters. IEEE MTT-S. pp719~722, 1994

共引文献30

同被引文献16

  • 1Snyder R V. Practical aspects of microwave filter development[J]. IEEE Microwave Magazine, 2007, 8(2): 42-54.
  • 2Harscher P, Vahldieck R, and Amari S. Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(12): 2532-2538.
  • 3Miraftab V and Mansour R R. Fully automated RF/ microwave filter tuning by extracting human experience using fuzzy controllers[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2008, 55(5): 1357-1367.
  • 4Zhou J, Duan B Y, and Huang J. Influence and tuning ot tmmble screws for microwave filters using least squares support vector regression[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2010,20(4): 422-429.
  • 5Lu Z and Sun J. Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification[J]. Applied Soft Computing Journal, 2009, 9(1): 94-99.
  • 6Zhao L, Jing S, and Butts K R. Linear programming support vector regression with wavelet kernel: a new approach to nonlinear dynamical systems identification[J]. Mathematicsand Computers in Simulation, 2009, 79(7): 2051-2063.
  • 7Zheng D, Jiaxin W, and Yannan Z. Non-flat function estimation with a multi-scale support vector regression[J]. Neurocomputing, 2006, 70(1-3): 420-429.
  • 8Bloch G, Lauer F, Colin G, et al.. Support vector regression from simulation data and few experimental samples[J]. Information Sciences, 2008, 178(20): 3813-3827.
  • 9Lauer F and Bloch G. Incorporating prior knowledge in support vector regression[J]. Machine Learning, 2008, 70(1): 89-118.
  • 10Macchiarella G. Extraction of matrix from measurements on IEEE Microwave and Wireless 20(6): 307-309. unloaded Q and coupling filters with large losses[J]. Components Letters, 2010,.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部