期刊文献+

等效分组级联BP网络模型及其应用 被引量:3

Equivalent Grouping-Cascaded BP Network Model and Its Applications
下载PDF
导出
摘要 松弛的和紧密的分组级联BP网络模型等概念的提出,对于解决有限的小样本情况下高维BP网络的训练和预测问题有一定的参考价值.定义了BP网络等效性和相关定理,构建并证明了与BP网络等效的分组级联网络模型,分析比较了两种网络模型所需训练样本的数量情况,并将其应用于网络安全评估领域.最后通过仿真试验结果证实了所提出分组级联BP网络模型的可行性和有效性. This paper puts forward to the concept of loosely and tightly grouping-cascaded BP network model to solve the training problem of high dimension BP neural network with limited small samples.After defining the equivalence definition and relative theorem of BP neural network,the grouping-cascaded model which is proved to be equivalent to BP network is constructed and the required number of training samples between them is compared.Then this method is applied in the evaluation of the network security.Finally,the feasibility and validity of the proposed grouping-cascaded BP network model is verified with simulation results.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1349-1354,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60872052)
关键词 分组级联网络模型 BP神经网络 等效性 小样本 grouping-cascaded network model BP neural networks equivalent small samples1
  • 相关文献

参考文献7

  • 1Shen zhi-he,Liu fen.Applying improved BP neural network in underwater targets recognition[A].International Joint Conference on Neural Networks[C].Vancouver,BC,Canada:IEEE,2006.2588-2592.
  • 2Hua Zong,Yun Zhang.A real-time recognition of working patterns to fault diagnosis based on BP neural network research institute of electronic engineering[A].Proceedings of the 6th World Congress en Intelligent Control and Automation[C].Dalian,China:IEEE,2006.5769-5772.
  • 3Wang Jia-yang.Comprehensive evaluation method of the effection and the accomplishment of the enterprise according to BP neural network[J].Journal of Chengdu Information Engineering College,2004(1):117-121.
  • 4曾勇虎,王雪松,肖顺平,庄钊文.基于瞬态极化时频分布及奇异值特征提取的雷达目标识别[J].电子学报,2005,33(3):571-573. 被引量:6
  • 5高阳,胡景凯,王本年,王冬黎.基于CMAC网络强化学习的电梯群控调度[J].电子学报,2007,35(2):362-365. 被引量:13
  • 6Simon Haykin.叶世伟,史忠植[译].神经网络原理[M].北京:机械工业出版社,2006:225-250.
  • 7Simon Haykin.Neural Networks:A Comprehensive Foundation[M].2nd Edition.USA:Pearson Education,1999.

二级参考文献16

  • 1曾勇虎,王雪松,肖顺平,庄钊文.瞬态极化短时Fourier变换及其在雷达目标识别中的应用[J].无线电工程,2004,34(12):40-42. 被引量:3
  • 2范建,李孝昌.奇异值特征抽取目标识别法[J].系统工程与电子技术,1993,15(3):14-17. 被引量:12
  • 3Chen V C,Ling H.Joint time-frequency analysis for radar signal and image processing[J].IEEE Signal Processing Magazine,1999,(3):81-93.
  • 4Y Sakai, K Kurosawa. Develop of elevator supervisory group control system with artificial intelligence[ J] .Hitachi Review, 1984,33:25 - 30.
  • 5M L Siikonen. Elevator traffic simulafion[J]. Simulation, 1993, 61 : 257 - 267.
  • 6H Ujihara,S Tsuji. The revolutionary AI-2100 elevator-group control system and the new intelligent option series [ J ]. Mitsubishi Electric Advance, 1988,45: 5 - 8.
  • 7H Ujihara, M Amano. The latest elevator group-control system [J]. Mitsubishi Electric Advance, 1994,67:10 - 12.
  • 8Cdtes R H, Barto A G. Elevator group control using multiple reinforcement learning agents[ J ]. Machine Learning, 1998, 33 (2) :235 - 262.
  • 9Kaelbling L P, Littlnan M L, Moore A W. Reinforcement learning: a survey [ J ]. Journal of Artificial Intelligence Research,1996,4:237 - 285.
  • 10R S Sutlon and A G Barto. Reinforcement Learning[M] .Cambridge,MA: MIT Press, 1998.

共引文献21

同被引文献28

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部