期刊文献+

基于格理论的非均匀稀疏线阵旁瓣结构的分析方法 被引量:2

Analysis of Side Lobe Structure of Nonuniform Sparse Linear Array Based on Lattice Theory
下载PDF
导出
摘要 在有限个阵元的情况下,非均匀稀疏线阵能得到更大的阵列孔径.但由于其是对空间信号的非均匀采样,不能通过常规的傅立叶变换方法求得其峰值旁瓣解析表达式.本文提出了一种基于格理论的非均匀稀疏线阵的旁瓣结构分析方法.首先建立了阵列流形格的数学模型并对其物理含义进行了仿真分析,然后推导了阵列流形格最近格点与峰值旁瓣的对应关系,从而将非均匀稀疏线阵峰值旁瓣结构分析问题转化为求距阵列流形格原点最近格点问题.该方法可以准确地确定非均匀稀疏线阵旁瓣中增益大于门限电平的旁瓣个数及其各自的方位.计算机仿真结果表明了该方法的有效性和准确性. For a given number of elements sparse linear array provides a larger aperture.However,it samples the incident signal nonuniformly,so the analytic expression of its peak sidelobes can′t be obtained by traditional FFT method.An analysis of side lobe structure of non-uniform sparse linear array based on lattice theory is presented.First,the array manifold lattice is modeled.Then the relationship between nearest lattice points and the peak sidelobes structure is investigated.Thus the problem of getting the sidelobe peaks becomes the problem of finding the nearest lattice points from the origin in array manifold lattice.This method can find the number and wavenumber vector with respect to peak side lobe whose gain is higher than the given gain precisely.Computer simulation results are presented to show its effectiveness and accuracy.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1459-1463,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60601016) 陕西省自然科学基础研究计划(No.2006F14) 空军工程大学电讯工程学院研究生论文创新基金(No.200707)
关键词 非均匀稀疏线阵 格理论 峰值旁瓣结构 non-uniform sparse linear array lattice theory peak side lobe structure
  • 相关文献

参考文献11

  • 1J H Conway and N J A Sloane.Sphere Packings,Lattices and Groups[M].3rd ed.NY:Springer,1999.
  • 2Daniele Micciancio,Shafi Goldwasser.Complexity of Lattice Problems a Cryptographic Perspective[M].The Kluwer International Series in Engineering and Computer Science,vol.671.Kluwer Academic Publishers,March 2002.
  • 3Netherland E Viterbo,E Biglieri.A universal lattice code decoder for fading channels[J].IEEE Trans Inform Theory,1997,45:1639-1642.
  • 4Neil J Malloy.Analysis and synthesis of general planar interferometer arrays[A].Speech and Signal Processing[C].Boston,MA,1983.352-355.
  • 5Neil J Malloy.Volumetric interferometer array sensors for high resolution passive sonar[A].Proceedings UDT Europe[C].La Spezia,Italy,2002.
  • 6Neil J Malloy.Array manifold geometry and sparse volumetric array design optimization[A].Proc Forty-First Asilomar Conference on Signals,Systems and Computers[C].Asilomar,CA,2007.1257-1261.
  • 7陈客松,何子述,韩春林.非均匀线天线阵优化布阵研究[J].电子学报,2006,34(12):2263-2267. 被引量:23
  • 8Victor Shoup.NTL:A Library for Doing Number Theory[OL].http://www,shoup,net/ntl.
  • 9E Agrell,T Eriksson,A Vardy,et al.Closest point search in lattices[J].IEEE Transactions on Information Theory,2002,48:2201-2214.
  • 10Chang X-W,Zhou T.MILES:MATLAB package for solving mixed integer least squares problems,theory and algorithms[OL].http://www,cs.mcgill,ca/~ chang/software,php.

二级参考文献14

  • 1王玲玲,方大纲.运用遗传算法综合稀疏阵列[J].电子学报,2003,31(z1):2135-2138. 被引量:54
  • 2Keen-Keong Yan,Yilong Lu Sidelobe reduction in array-pattern synthesis using genetic algorithm[J].IEEE Trans Antennas Propagat,1997,45(7):1117-1122.
  • 3Kumar B P,Branner G R.Generalized analytical technique for the synthesis of unequally spaced arrays with linear,planar,cylindrical or spherical geometry[J].IEEE Trans.Antennas Propagat.,2005,53(2):621-634.
  • 4Kumar B P,Branner G R.Design of unequally spaced arrays for performance improvement[J].IEEE Trans Antennas Propagat,1999,47(3):511-523.
  • 5Skolnik M I,Nemhauser G,Sherman J W.Dynamic programming applied to unequally spaced arrays[J].IEEE Trans Antennas Propagat,1964,AP-12(1):35-43.
  • 6Mailloux R J,Cohen E.Statically thinned arrays with quantized element weights[J].IEEE Trans Antennas Propagat,1991,39(4):436-447.
  • 7Murino V,Trucco A,Regazzoni C S.Synthesis of unequally spaced arrays by simulated annealing[J].IEEE Trans Antennas Signal Processing,1996,44(1):119-123.
  • 8Haupt R L.Thinned arrays using genetic algorithms[J].IEEE Trans,1994,AP-42(7):993-999.
  • 9Lo Y T,Lee S W.A study of space-tapered arrays[J].IEEE Trans Antennas Propagat,1966,AP-14(1):22-30.
  • 10O'Neill D J.Element placement in thinned arrays using genetic algorithms[A].OCEANS' 94 ' Oceans engineering for today's technology and tomorrow's preservation' proceedings[C].1994,2(9):301-306.

共引文献22

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部