期刊文献+

一类时变广义系统的稳定性 被引量:2

On Stability for a Class of Time-varying Singular System
下载PDF
导出
摘要 研究了一类时变广义系统的能稳定性,并得出在满足一定条件下,该类广义系统是能稳定的结论.建立相应的广义Riccati矩阵微分方程线性迭代算法,用以寻求稳定广义系统的状态反馈控制.应用所得的结果计算了一个实例. A class of time-varying singular system is investigated.A conclusion is drawn that the time-varying singular system satisfying some conditions is stabilizable.An iteration method for solving the corresponding Riccati matrix differential equation is established.Moreover,an example is given to illustrate the process for obtaining stabilizing feedback control of a time-varying singular system.
作者 吴丹 朱经浩
机构地区 同济大学数学系
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第6期925-928,934,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(10671145)
关键词 时变广义系统 能稳定性 Riccati矩阵微分方程 状态反馈控制 time-varying singular system stabilizability Riccati matrix differential equation stabilizing feedback control
  • 相关文献

参考文献8

  • 1Lewis F L.A survey of linear singular systems[J].Circuits,Systems and Systems Processing,1986,5 (1):3.
  • 2Campell S L,Petzold L.Canonical forms and solvable singular system of differential equation[J].SIAM J Alg Discrete Math,1983,4(4):517.
  • 3Campell S L,Terrel W J.Observability for linear time-varying descriptor system[J].SIAM J Matrix Anal Applic,1991,12(4):484.
  • 4Takaba K.Robust H∝ control of descriptor system with time varying uncertainty[J].Int J,1998,71(4):559.
  • 5苏晓明,张庆灵.时变广义系统的稳定性[J].东北大学学报(自然科学版),2001,22(5):572-575. 被引量:7
  • 6Takaba K,Morrihira N.A generalized Lyapunov theorem for descriptor systems[J].IEE Proc Control Theory,1995,4:49.
  • 7ZHU Jinghao.On nonautonomous linear-quadratic optimal control[J].Journal of Tongji University:Natural Science,1997,25(6):709.
  • 8Golub G H,Van Loan C F.Matrix computations[M].3rd ed.Baltimore:Johns Hopkins University Press,1996.

二级参考文献1

  • 1张庆灵,广义大系统的分散控制与鲁棒控制,1997年,83页

共引文献6

同被引文献16

  • 1张凯院,徐仲.数值代数[M].第2版修订本.北京:科学出版社,2010.
  • 2Dehghan M, Hajarian M. Analysis of an Iterative Algorithm to Solve the Generalized Coupled Sylvester Matrix Equations[J]. Applied Mathematical Modelling, 2011, 35: 3285-3300.
  • 3Gao Y H. Newton's Method for the Quadratic Matrix Equation[J]. Applied Mathematics and Computation, 2006, 182: 1772-1779.
  • 4Long J H, Hu X Y, Zhang L. Improved Newton's method with exact line searches to solve quadratic matrix equation[J]. Journal of Computational and Applied Mathematics, 2008, 222: 645-654.
  • 5Guo C H. Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in stochastic fluid models[J]. Journal of Computational and Applied Mathematics, 2006, 192: 353- 373.
  • 6Higham N J, Kim H M. Solving a quadratic matrix equation by Newton's method with exact line searches[J]. SIAM Journal on Matrix Analysis and Applications, 2001, 23(2): 303-316.
  • 7Lin Y Q, Bao L, Wu Q H. On the convergence rate of an iterative method for solving nonsymmetric algebraic Riccati equations[J]. Computers and Mathematics with Application, 2011, 62: 4178- 4184.
  • 8张贤达.矩阵分析与应用[M1.北京:清华大学出版社,2006:105-113.
  • 9沈昱恒,侯明善.基于视线运动模型的椭圆轨道交会最优控制[J].力学学报,2010,42(6):1237-1243. 被引量:1
  • 10武见,张凯院,刘晓敏.多变量矩阵方程组一种异类约束解的迭代算法[J].数值计算与计算机应用,2011,32(2):105-116. 被引量:4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部