期刊文献+

2自由度门式起重机器人的轨迹控制 被引量:1

Trajectory Control a 2-Degree-of-freedom Gantry Crane Robot
原文传递
导出
摘要 为了解决2自由度门式起重机器人系统的吊运轨迹精确跟踪控制和反晃动的有效消除,在建立其非线性动力学模型的基础上,详细分析其所呈现的微分平坦性,指出这种微分平坦性对精确轨迹的生成带来了很大的便利;接着分析了其前馈控制器和基于微分平坦性的反馈轨迹跟踪控制器,指出其具有微分平坦性的动力学系统是非线性的,故其所对应的状态方程是非线性的,但可通过状态变换实现无反馈精确线性化,从而得到一个完全能观完全能控的线性系统;若对该线性系统施加一个误差线性反馈器,就得到输出解耦的闭环系统,这样通过调整反馈增益可使吊具的轨迹误差实现全局渐近收敛;仿真结果验证了理论研究结论的正确性,同时表明吊具在低速运动时,摩擦对起重机器人系统的驱动力输入的影响不大。 In order to realize the accurate trajectory tracking and anti-swing control of 2 degree-of-freedom gantry crane robot, detailed analysis of the differential flatness on the basis of its nonlinear dynamic model is given and it is pointed out that such kind of differential flatness is beneficial to accurate trajectory generation. The feedforward controller and feedback trajectory tracking controller are analyzed and it is found that the corresponding state space is nonlinear because the flatness-based dynamic system is nonlinear, but through the state space transformction, the system can be changed into a system of exact linearization without feedback. Hemee them a totally being observed and controled linear system is obtained. If an elTor linear feedback controller can be odded to this linear system, Thus, the error between the desired and real trajectory of the spreader can realize global asymptotic stability and convergence by adjusting the feedback gains. The simulation resuhs has proven the correctness of the theoretical conclusions and shown that influence of the friction on the inputs for the actuators is little when the spreader moves with a low speed.
出处 《机械设计与研究》 CSCD 北大核心 2010年第3期23-28,共6页 Machine Design And Research
基金 国家自然科学基金资助项目(50805054) 中国博士后科学基金面上资助项目(20090450721)
关键词 2自由度 起重机器人 微分平坦性 2-degree-of-freedom crane robot differential flatness
  • 相关文献

参考文献17

  • 1ABDEL-RAHMAN EM,NAYFEH AH,MASOUD ZN.Dynamics and control of cranes:a review[J].Journal of Vibration and Control,2003,9(7):863-908.
  • 2董明晓,荷淑娟,宋传增.桥式起重机自动化可行性分析[J].起重运输机械,2005(8):17-19. 被引量:6
  • 3Arai T,Osumi H.Three wire suspension robot[J].Industrial Robot,1992,19(4):17-22.
  • 4BENHIDJEB A,GISSINGER GL.Fuzzy control of an overhead crane performance comparison with classic control[J].Control Engineering Practice,1995,3(12):1687-1696.
  • 5SINGHOSE WE,PORTER LJ,SEERING WP.Input shaped control of a planar gantry crane with hoisting[C] // Proceedings of the 1997 American Control Conference,Albuquerque,New Mexico,4-6 June 1997,1:97-100.
  • 6LEE H-H,LIANG Y,SEGURA D.A sliding-made anti-swing trajectory control for overhead cranes with high-speod load hoisting[J].Journal of Dynamic Systems,Measurement,and Control,December,2006,128(4):842-845.
  • 7Yi J YUBAZAKI N,HIROTA K.Anti-swing and positioning control of overhead traveling crane[J].Information Sciences,2003,155(1-2):19-42.
  • 8LIU D,YI J,ZHAO D,et al.Adaptive sliding mode fuzzy control for a two-dimensional overhead crane[J].Mechatronics,2005,15(5):505-522.
  • 9CHANG C-Y,CHIANG K-H.Fuzzy projection control law and its application to the overhead crane[J].Mechatronics,2008,18(10):607-615.
  • 10Brockeett RW.Nonlinear systems and differential geometry[C] //Proceedings of IEEE,1976,64(1):61-72.

二级参考文献1

共引文献5

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部