期刊文献+

端部约束悬臂输流管道的非线性动力学特性 被引量:1

Nonlinear dynamic characteristics of end restraint cantilever fluid-conveying pipe
下载PDF
导出
摘要 针对悬臂端受线性弹簧支承和扭转弹簧约束的约束悬臂输流管道,采用分岔图、相平面图、Poincare截面和Lyapunov指数等非线性振动的数值仿真方法,研究其在自激参数激励外激励联合激励作用下的非线性动力学特性,分析系统出现周期和混沌运动响应的参数条件,揭示其通向混沌的途径,探寻各参数对输流管道振动特性的影响规律和各参数之间的相互制约关系.数值仿真结果表明,管道系统随质量比、端部约束刚度和管道粘弹性系数的不同,分别呈现周期、概周期、阵发性和混沌运动多种响应形式,系统通过倍周期分岔或阵发性进入混沌,通过倍周期倒分岔脱离混沌. For the restraint cantilever fluid-conveying pipe supported by linear spring and restrained by torsion spring,the nonlinear dynamic characteristics under the combined self-excitation,parameter-excitation and external excitation were investigated by means of such nonlinear numerical simulation methods as bifurcation diagram,phase plane,Poincare section and Lyapunov exponent. The parameters conditions for the system to exhibit the periodic and chaotic motion response were analyzed. The path towords chaos was revealed. The effect regularity of various system parameters on the vibration characteristics of the pipe and the restricting relationship among the parameters were discussed. The numerical simulation results show that the pipe system exhibits the multiple response forms such as the periodic motion,quasi-periodic motion, intermittent chaos and chaotic motion at different mass ratio,end restraint stiffness and visco-elastic coefficient of pipe. The system gets into the chaotic motion by the period-doubling bifurcation and intermittent chaos,and deviates the chaotic motion by the inverse period-doubling bifurcation.
出处 《沈阳工业大学学报》 EI CAS 2010年第3期300-305,共6页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(50075010) 辽宁省高等学校科研资助项目(2008568)
关键词 端部约束悬臂管道 流固耦合 非线性 动力学特性 相平面 POINCARE截面 分岔 混沌 end restraint cantilever pipe fluid structures interaction (FSI) nonlinear dynamic characteristic phase plane Poincare section bifurcation chaos
  • 相关文献

参考文献16

  • 1Paidoussis M P. Fluid-structure instabilities [ M ]. San Diego: Academic Press, 1998.
  • 2Paidoussis M P, Li G X, Rand R H. Chaotic motions of a constrained pipe conveying fluid [J]. Journal of Applied Mechanics, 1991,58:559 - 565.
  • 3Paidoussis M P, Sarkar A, Semler C. A horizontal fluid-conveying cantilever: spatial coherent structures, beam modes and jumps in stability diagram [ J]. Journal of Sound and Vibration ,2005,280 : 141 - 157.
  • 4Jin J D. Stability and chaotic motions of a restrained pipe conveying fluid[J]. Journal of Sound and Vibration, 1997,208:427 -439.
  • 5Sugiyama Y, Tanaka Y, Kawagoe H. Effect of a spring support on the stability of pipes conveying fluid [J]. Journal of Sound and Vibration, 1985,100 (2) :257 - 270.
  • 6Paidoussis M P, Moon F C. Nonlinear and chaotic fluid elastic vibrations of a flexible pipe conveying fluid [J]. Journal of Fluids and Structures, 1988,2 : 567 - 591.
  • 7Paidoussis M P, Li G X, Moon F C. Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid[J].Journal of Sound and Vibration, 1989,135 : 1 - 19.
  • 8Paidoussis M P, Li G X, Rand R H. Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis and experiment [ J ]. ASME Journal of Applied Mechanics, 1991,58:559 - 565.
  • 9倪樵,黄玉盈.非线性约束粘弹性输液管的动力特性分析[J].华中理工大学学报,2001,29(2):87-89. 被引量:11
  • 10Jin J D, Zou G S. Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid [J]. Journal of Sound and Vibration,2003,260 (2) :783 -805.

二级参考文献49

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2金基铎,杨晓东,邹光胜.两端支承输流管道的稳定性和临界流速分析[J].机械工程学报,2006,42(11):131-136. 被引量:27
  • 3包日东,闻邦椿,龚斌.微分求积法分析水下输流管道的竖向动力特性[J].东北大学学报(自然科学版),2007,28(2):241-245. 被引量:6
  • 4包日东,闻邦椿.微分求积法分析弹性支承输流管道的稳定性[J].东北大学学报(自然科学版),2007,28(7):1017-1020. 被引量:17
  • 5Holmes P J. Pipes supported at both ends cannot flutter [J]. Journal of Applied Mechanics, 1978, 45: 619-622.
  • 6Paidoussis M P. Fluid-structure instabilities [M]. V. 1. San Diego: Academic Press, 1998.
  • 7Paidoussis M P, Li G X, Rand R H. Chaotic motions of a constrained pipe conveying fluid [J]. Journal of Applied Mechanics, 1991, 58: 559-565.
  • 8Paidoussis M P, Sarkar A, Semler C. A horizontal fluid-conveying cantilever: Spatial coherent structures, beam modes and jumps in stability diagram [J]. Journal of Sound and Vibration, 2005, 280:141-157.
  • 9Jin J D, Zou G S. Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid [J]. Journal of Sound and Vibration, 2003, 260(2): 783-805.
  • 10Sugiyama Y, Tanaka Y, Kawagoe H. Effect of a spring support on the stability of pipes conveying fluid [J]. Journal of Sound and Vibration, 1985, 100(2): 257-270.

共引文献91

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部