期刊文献+

适用于气动弹性的小波非定常气动力降阶方法 被引量:4

Wavelet-based Reduced-order Method for Unsteady Aerodynamics Applicable to Aeroelasticity
原文传递
导出
摘要 发展非定常气动力模型降阶技术旨在缩减计算耗费并且使得计算流体力学信息能够应用于气动伺服弹性以及设计优化当中。采用小波方法建立基于Volterra级数的非定常气动力降阶模型。在模型识别过程中,激励是光滑连续的且以零阶保持方式进行离散,采样频率选择二的整数幂次。近似的一阶Volterra核基于Haar尺度函数族展开,鉴于Volterra核在系统响应中的衰减特性,可在合适的有限时长截断一阶核。为了获得一阶核的各项展开系数,需要求解由输入/输出数据组成的超定方程,其中涉及到奇异值分解算法。为了验证小波方法的有效性,算例选取了二维的NACA64a010翼型。数值仿真结果表明该方法能够比较准确地预测结构小扰动引起的非定常气动力响应且能描述一定的非线性现象。 The goal behind the development of reduced-order models for unsteady aerodynamics is to reduce computational cost and facilitate the use of computational fluid dynamics information in aeroservoelasticity and design optimization.In this article reduced-order aerodynamic models are derived by utilizing wavelet approximations of kernels appearing in Volterra series representations.During the process of model identification,input excitation is smooth and continuous and it is discretized by employing a zero-order hold with a sampling rate of 2 integer power.The approximated first-order kernel is expanded based on the Haar scaled function family.The first-order kernel can be truncated in a properly limited time length as a result of the Volterra kernel decay characteristic in system responses.In order to obtain the coefficients of the Volterra kernel,the overdetermined equation composed of the input/output data must be solved via singular value decomposition.Finally,an example of a two-dimensional NACA64a010 airfoil validates the wavelet-based modeling approach.The numerical results show that the proposed method is able to predict more accurately the unsteady aerodynamic responses due to structural small-amplitude motions and describe certain nonlinear phenomena.
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第6期1149-1155,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(90716006)
关键词 气动弹性 气动力降阶模型 小波 VOLTERRA级数 超定方程 零阶保持 aeroelasticity reduced-order aerodynamic model wavelet Volterra series overdetermined equation zero-order hold
  • 相关文献

参考文献19

  • 1Hall K C, Thomas J P, Dowell E H. Reduced-order modeling of unsteady small disturbance flows using a frequen cy-domain proper orthogonal decomposition technique[R]. AIAA -1999- 655, 1999.
  • 2Thomas J P, Dowell E H, Hall K C. Three-dimensional transonic aeroelasticity using proper orthogonal decomposition based reduced order models[R]. AIAA-2001 1526, 2001.
  • 3Cowan T J, Arena A S Jr, Gupta K K. Development of a discrete time aerodynamic model for CFD-based aeroelastic analysis[R]. AIAA- 1999-765, 1999.
  • 4Cowan T J, Arena A S Jr, Gupta K K. Accelerating computational fluid dynamics based aeroelastie predictions using system identification[J]. Journal of Aircraft, 2001, 38(1): 81- 87.
  • 5张伟伟,叶正寅.基于气动力降阶模型的跨音速气动弹性稳定性分析[J].计算力学学报,2007,24(6):768-772. 被引量:12
  • 6Silva W A. Reduced order models based on linear and nonlinear aerodynamic impulse responses [R]. AIAA-1999 1262, 1999.
  • 7陈刚,徐敏,陈士橹.基于Volterra级数的非线性非定常气动力降阶模型[J].宇航学报,2004,25(5):492-495. 被引量:18
  • 8Silva W A, Barrels R E. Development of reduced order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code[R]. AIAA-2002-1596, 2002.
  • 9Raveh D E, Levy Y, Karpel M. Efficient aeroelastic analysis using computational unsteady aerodynamics[J]. Journal of Aircraft, 2001, 38(3): 547-556.
  • 10吴志刚,杨超.基于Volterra级数的跨音速非定常气动力建模[J].北京航空航天大学学报,2006,32(4):373-376. 被引量:9

二级参考文献37

  • 1徐敏,陈士橹.CFD/CSD耦合计算研究[J].应用力学学报,2004,21(2):33-36. 被引量:41
  • 2史爱明,杨永年,叶正寅.跨音速单自由度非线性颤振——嗡鸣的数值分析[J].西北工业大学学报,2004,22(4):525-528. 被引量:9
  • 3陈刚,徐敏,陈士橹.基于Volterra级数的非线性非定常气动力降阶模型[J].宇航学报,2004,25(5):492-495. 被引量:18
  • 4张伟伟,叶正寅.基于非定常气动力辨识技术的气动弹性数值模拟[J].航空学报,2006,27(4):579-583. 被引量:27
  • 5Earl H.Dowell,Kenneth C.Hall,Jeffrey P.Thomas,and et al.Reduced Order Model in Unsteady Aerodynamics[C].AIAA-99-1261
  • 6Silva W A.Discrete-Time Linear and Nonlinear Aerodynamic Impulse Responses for Efficient CFD Analysis[D].PH.D dissertation,College of William& Mary,December 1997
  • 7Boyd Stephen,Tang Y S,Chua Leon A.Measuring Volterra Kernels[J].IEEE Transactions on Circuits and Systems,1983,30(8):51-60
  • 8Steven J Clancy,Wilson J Rugh.A note on the identification of discrete-time polynomial systems[J].IEEE Transactions on Automation Control,1979,24(6):975-978
  • 9Xu Min,Chen Zhimin,Chen Gang,Chen Silu.Study coupling interface mapping for numerical nonlinear aeroelasticity[C].Russian China 2th Aerodynamics and 6the Structure Strength Meeting,Russia,2003[中俄第七届空气动力学与第六届结构强度技术交流会议,俄罗斯,2003]
  • 10Silva WA.Reduced-Order Models Based On Linear and nonl- inear Aerodynamic Impulse Response[C].CEAS/AIAA/ICASE/NASA,International Forum on Aeroelasticity and Structure Dynamics,June,1999

共引文献31

同被引文献49

引证文献4

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部