期刊文献+

基于小波变换的SAR图像自适应子带编码算法

An Algorithm of Adaptive Subband Coding for SAR Image Based on Wavelet Transform
下载PDF
导出
摘要 为降低大数据量SAR图像对传输带宽和存储空间的要求,必须对SAR图像进行高效压缩。基于小波变换的传统SAR图像压缩方法只对低频子带进行分解处理,造成SAR图像处于中高频子带的重要纹理信息丢失。针对上述问题,提出一种基于小波变换的自适应SAR图像压缩算法。首先对图像进行小波软阈值消噪预处理,然后依据能量指标,进行子带重要性判定,对认定为重要的子带进行深一层次分解,分解完成后对所有子带进行恒定比特率条件下的最小误差量化,实现对图像的自适应压缩。仿真实验表明:该算法能很好地保护SAR图像的高频细节,提高了信噪比。 In order to store and transmit largely and efficiently,SAR images must be compressed effectually.The traditional coding method of SAR image based on wavelet translation can only be used to decompose low frequency,so a lot of information of intermediate/high frequency is lost.In view of the above problem,this paper presents an adaptive SAR image compression algorithm based on wavelet transform.In this paper,the speckle noise is reduced to improve the image quality first.And then according to the energy index,the SAR image is decomposed into a series of subbands,which have different significances.Finally,all the subbands are quantized by the minimal error quantization at the same bit rate.The use of the algorithm can protect the high frequency details of SAR image adequately,and can achieve a better compression result.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2010年第3期48-52,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家"863"计划资助项目(2007AAXX1206)
关键词 小波变换 SAR图像 自适应压缩 子带编码 wavelets transform SAR image adaptive compression subband coding
  • 引文网络
  • 相关文献

参考文献10

  • 1Wiley J C,Curlander,McDonough R N.Synthetic Aperture Radar Systems and Signal Processing[M].New York:Wiley-inter Sciennce Press,1991.
  • 2宋莹华,宋建社,薛文通,袁礼海.SAR图像压缩技术的发展与现状[J].计算机应用研究,2005,22(4):6-8. 被引量:10
  • 3Goodman J W.Some Fundamental Properties of Speckle[J].Journal of the Optical Society of America,1976,66(11):1145-1150.
  • 4Lee J S.Digital Image Enhancement and Noise Filtering by Use of Local Statistics[J].IEEE Trans Pattern Anal Machine Intel,1980,2(2):165-168.
  • 5David L Donoho.De-noising by Soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 6杨树丽,郭雷,常微微.SAR图像小波包子带编码[J].激光与红外,2008,38(3):292-295. 被引量:1
  • 7张旭东,卢国栋,冯健.图像编码基础和小波压缩技术-原理算法和标准[M].北京:清华大学出版社.2003.
  • 8郭迎征,许录平.基于细节信息保护的SAR图像压缩[J].量子电子学报,2004,21(5):577-582. 被引量:3
  • 9Gersho A,Gray R M.Vector Quantizations and Signal Compression[M].Boston:Kluwer Acadmetic Publishers,1992.
  • 10Antonini M,Barlaud M.Image Coding Using Wavelet Transform[J].IEEE Trans on Image Processing,1992,1(2):205-220.

二级参考文献24

  • 1郭迎征,许录平.基于小波包分解的复杂图像压缩[J].计算机应用,2003,23(z2):84-86. 被引量:3
  • 2宋建社.小波分析及其应用例选[M].现代出版社,1998,5..
  • 3Chang C Y, et al. Spatial Compression of Seasat SAR Imagery [ J ].IEEE Trans. Geoscience and Remote Sensing, 1988, 26(6) : 673-685.
  • 4Rangy R K, Wessels G J. Spatial Considerations in SAR Speckle Simulation [ J]. IEEE Trans. Geoscience and Remote Sensing,1988, 26(5) : 667-671.
  • 5Arps Ronald B, Truong Thomas K. Comparison of International Standards for Lossless Still Image Compression [ J ]. Proc. IEEE,1994, 82(6) : 889-899.
  • 6R W Ires. On the Compression of Synthetic Aperture Radar Imagery[ D ]. Albuquerque, New Mexico: Dept. of Electrical and Computer Engineering, the University of New Mexico, 1998.
  • 7陆军.合成孔径雷达—系统和信号处理[M].合肥:华东电子工程研究所,1999..
  • 8Netravali A N, Limb J O. Picture Coding: A Review [J]. IEEE,1980,68 ( 3 ) :366-406.
  • 9U Benz, K Strodl, A Moriera. Comparison of Several Algorithms for SAR Raw Data Compression [ J ]. IEEE Trans. C, eoscienee and Remote Sensing, 1995,33 (9) : 1266-1276.
  • 10R D Dony, S Haykin. Compression of SAR Images Using KLT, VQ and Mixture of Principal Components [ J]. IEEE Proc. Radar, Sonar Navig, 1997,144 ( 6 ) : 113-120.

共引文献12

相关主题

;
使用帮助 返回顶部