期刊文献+

Two Kinds of Cavity Geometry for Enhanced Laser Cooling of Solids

Two Kinds of Cavity Geometry for Enhanced Laser Cooling of Solids
下载PDF
导出
摘要 We present a comparison between intracavity cooling and external cavity cooling for optical refrigeration. The results show that the intracavity scheme is preferred at low optical densities (〈 0.008), while the external cavity scheme is preferred at higher optical densities (〉 0.01). We can choose the proper scheme for different eases in experiments. Moreover, under the same conditions, taking Yb^3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlFa-NaF) film as an example, the cooling processes of the two scheme are obtained. The calculated results show that intracavity cooling will achieve a larger temperature drop for a thin film sample. Finally, the diode laser may become a candidate for the intraeavity model briefly discussed. We present a comparison between intracavity cooling and external cavity cooling for optical refrigeration. The results show that the intracavity scheme is preferred at low optical densities (〈 0.008), while the external cavity scheme is preferred at higher optical densities (〉 0.01). We can choose the proper scheme for different eases in experiments. Moreover, under the same conditions, taking Yb^3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlFa-NaF) film as an example, the cooling processes of the two scheme are obtained. The calculated results show that intracavity cooling will achieve a larger temperature drop for a thin film sample. Finally, the diode laser may become a candidate for the intraeavity model briefly discussed.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第7期83-86,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 10974055, the 2009 Shanghai Universities Selection and Train Outstanding Young Teachers in Special Funds for Scientific Research, and Shanghai Second Polytechnic University Fund (No QD209007).
  • 相关文献

参考文献17

  • 1Epstein R I, Buchwald M I, Edwards B C, Gosnell T R and Mungan C E 1995 Nature 377 500.
  • 2P-ayner M E, Friese J, Truscott A G, Heckenberg N R and Rubinsztein D H 2001 J. Mod. Opt. 48 103.
  • 3Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C and Anderson J E 2000 Phys. Rev. Lett. 85 3600.
  • 4Bowman S R and Mungan C E 2000 Appl. Phys. B 71 807.
  • 5Mendioroz A, Fernandez J, Voda M, Al-Saleh M and Balda R 2002 Opt. Lett. 27 1525.
  • 6Heeg B, Stone M D, Khizhnyak A, Rumbles G, Mills G and DeBarber P A 2004 Phys. Rev. A 70 021401.
  • 7Fernandez J, Garcia-Adeva A J and Balda R 2006 Phys. Rev. Left. 97 033001.
  • 8Feng Z G, Zhang L J, Zhao J M, Li C Y, Li A L and Jia S T 2008 Chin. Phys. Lett. 25 2661.
  • 9Zhang W T and Zhu B H 2009 Chin. Phys. Lett. 26 073201.
  • 10Zhou Q and Yin J P 2008 Chin. Phys. Lett. 25 93.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部