摘要
We investigate the strain effects on the electronic properties of boron nitride nanoribbons (BNNFts) by using firstprinciples calculations. The results show that the energy gap of BNNRs with both armchair edges (A-BNNRs) and zigzag edges (Z-BNNFts) decreases as the strain increases. As strain increases, the energy gaps of Z-BNNRs decrease rapidly as the width increases and reduce significantly to small values, which makes Z-BNNRs change from wide-gap to narrow-gap semiconductors.
We investigate the strain effects on the electronic properties of boron nitride nanoribbons (BNNFts) by using firstprinciples calculations. The results show that the energy gap of BNNRs with both armchair edges (A-BNNRs) and zigzag edges (Z-BNNFts) decreases as the strain increases. As strain increases, the energy gaps of Z-BNNRs decrease rapidly as the width increases and reduce significantly to small values, which makes Z-BNNRs change from wide-gap to narrow-gap semiconductors.
基金
Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos 200805300003 and 20070530008, the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China under Grant No 708068, the National Natural Science Foundation of China under Grant Nos 10774127 and 10874143, and Hunan Provincial Innovation Foundation for Postgraduate under Grant No CX2009B123.